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a  b  s  t  r  a  c  t

Three  candidate,  non-nested,  growth  models  (von  Bertalanffy,  Gompertz  and  inverse  logistic)  were  fitted
to multiple  samples  of  tag-recapture  data  (n  = 27  samples)  to  determine  the  best  statistical  model  for
blacklip  abalone  (Haliotis  rubra)  populations  in Tasmania,  Australia.  Wild  populations  of  blacklip  abalone
were sampled  for  growth  data  using  tag-recapture  methods.  The  best  statistical  model  was  identified  for
each  sample  using  Akaike’s  Information  Criteria  and  Akaike  weights  to measure  the  relative  statistical
fit. Using  these  criteria,  the  best  fitting  model  was  the  inverse  logistic  for  21  of  the 27  samples,  both
the  von  Bertalanffy  and  the  Gompertz  models  were  the  best  fitting  model  in  three  samples  each.  When
the  inverse  logistic  was  the  best  fitting  model  it was  the  best  unambiguously,  as  indicated  by  the high
nformation theory
nverse logistic model

Akaike  weight  values  (generally  wi >  0.8; 0.65–1.0).  In contrast,  when  either  the  von  Bertalanffy  or  the
Gompertz  growth  models  were  statistically  optimal,  the  highest  Akaike  weights  ranged  between  0.15
and  0.44  across  both  models.  We  conclude  that  the use  of  either  the  von  Bertalanffy  or  Gompertz  growth
models  in  the  assessment  of Tasmanian  blacklip  abalone  would  be  statistically  sub-optimal  and  may
mislead  assessments  of  Tasmanian  abalone  stocks.  The  inverse  logistic  model  can  be  considered  as  a
good  candidate  growth  model  for other  fished  invertebrate  stocks.
. Introduction

Growth models are a key component of stock assessments used
n the management of commercially important invertebrate marine
pecies. This is especially the case for difficult to age species such as
balone, lobsters, and urchins, where size-based assessment mod-
ls may  be used to describe the population dynamics instead of
ge-based models. Despite their importance the growth models
elected for abalone populations vary among studies resulting in
ifferent growth models being used for the same species in dif-
erent regions (Troynikov et al., 1998; Worthington et al., 1995).
n Australia, there has generally been little explicit consideration
iven to the selection of a length-based growth model from an
rray of candidate models used to fit tag-recapture data from

lacklip abalone (Haliotis rubra) populations and the model selec-
ion methods adopted in earlier studies of abalone growth are not
lways clear. In a more recent study of Haliotis rufescens in northern

∗ Corresponding author at: Institute for Marine and Antarctic Studies, University
f  Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia. Tel.: +61 3 6232 5004;
ax:  +61 3 6232 5000.
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© 2011 Elsevier B.V. All rights reserved.

California (Rogers-Bennett et al., 2007), the selection of a growth
model was explicitly based on information criteria which is
a widely accepted and standard method for model selection
(Burnham and Anderson, 2002).

In a review of Australian abalone growth studies, Day and
Fleming (1992) identified that model selection was usually limited
to a choice of only two  models: the von Bertalanffy and the Gom-
pertz growth models. The von Bertalanffy growth model tends to
be the default model in fisheries both currently and historically
(Jákupsstovu and Haug, 1988; Katsanevakis and Maravelias, 2008).
However, the systematic selection of an optimum growth model
from a range of competing models does not appear to be common
and the plausibility of the von Bertalanffy growth model has been
questioned for blacklip abalone and other fish species (Day and
Taylor, 1997; Katsanevakis and Maravelias, 2008). A characteris-
tic of the von Bertalanffy is it predicts a linear decline in growth
rate as small juveniles get bigger. Alternatively, the Gompertz pre-
dicts growth rates that initially increase for small juveniles and then
decline (Fig. 1). However, neither of these characteristics have been

observed in data from small juveniles. Instead the growth rate of
small juveniles has been observed to remain constant rather than
decline or increase (Day and Fleming, 1992; Prince et al., 1988). Both
the von Bertalanffy and Gompertz growth curves may  therefore

dx.doi.org/10.1016/j.fishres.2011.08.005
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:fayh@utas.edu.au
dx.doi.org/10.1016/j.fishres.2011.08.005
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Fig. 1. The von Bertalanffy, Gompertz, and inverse logistic growth models fitted to
a  dataset that was the best example of tag recapture data in terms of sample size
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nd  initial size range. Presented are tag-recapture data from multiple years from
ite 458, Black Island 42.9687◦S, 145.4924◦E. Multiple years of tag-recapture data
ere pooled together.

e considered inappropriate for describing the growth of juvenile
ize classes. Even so, owing to its extensive use the von Bertalanffy
odel may  be useful for making consistent comparisons between

tudies.
Recently, the inverse logistic model was developed as a growth

odel for blacklip abalone populations in Tasmania and this model
ncorporates constant growth rates in the smaller juvenile size
lasses. The development of the inverse logistic model was influ-
nced by a modal analysis of length frequencies that suggested
onstant growth rates for juvenile size classes (10–70 mm)  (Haddon
t al., 2008). Constant growth rates in small juveniles differs
arkedly from the predictions of the von Bertalanffy and Gom-

ertz models and therefore the inverse logistic was proposed as
eing biologically more plausible.

In considering which models to include as a set of candidate
rowth models, it is important to assess the biological plausibil-
ty of the predicted growth trajectories in addition to statistical
roperties used in model selection (Burnham and Anderson, 2002).
his consists of establishing a set of biologically plausible candidate
odels and selecting the best model according to statistical crite-

ia, which measure the relative support for a model given the data
Sorensen and Gianola, 2002). With the exception of two  studies
Haddon et al., 2008; Rogers-Bennett et al., 2007), multiple candi-
ate growth models (i.e. greater than two models) have not been
xplicitly tested on abalone using formal model selection methods.
owever, both of these studies focused on only a single popula-

ion in their comparisons and inter model comparisons were only
 minor component in the study by Haddon et al. (2008).  Where
odel selection is explicit, the minimum Akaike Information Crite-

ion (AIC) is customarily used to identify the optimal model (Shono,
000). Usually, the statistically best fitting candidate model is con-
idered to be the optimal model, although biological factors are
lso important. For example, a candidate model with a growth tra-
ectory similar to that of the inverse logistic, was the best fitting

odel to H. rufescens in northern California but the model was

ejected because of the rapid decline in growth rate between the
uvenile phase and adult phase (Rogers-Bennett et al., 2007). Under
uch circumstances the best fitting candidate growth model may
e rejected following post hoc assessment of its biological validity.
Fig. 2. Map of the distribution of the 27 samples of tagged blacklip abalone around
Tasmania. The eight sites which had both growth and maturity data from the same
site and year are indicated with an ‘M’.

In the present study, model selection is based on a combination
of biological and statistical criteria. Three non-nested candidate
growth models were fitted to tag-recapture data from 27 sam-
ples around Tasmania, Australia, to identify the optimal model
in terms of statistical fit and parsimony guided by systematic
model selection techniques. Each growth model was fitted to
multiple populations of tag-recapture data from predominantly
late-juvenile to adult-sized animals (80–210 mm shell length). The
aims of this study were threefold; firstly to characterize typical vari-
ation in the parameters of three growth models for blacklip abalone
populations around Tasmania, secondly to identify the best fit-
ting growth model using goodness-of-fit tests and model selection
techniques, and finally to examine whether the predicted growth
trajectories could be given a biologically realistic interpretation.

2. Methods

2.1. Site selection

The sites sampled represent a range of currently fished abalone
reefs in the Tasmanian fishery (Fig. 2). The sites selected were gen-
erally chosen on the advice of commercial divers who  were actively
fishing and familiar with the region.

2.2. Growth data

Length increment data were obtained from tag-recapture stud-
ies. Tag-recapture data used in the analyses were collected during
multiple fishery independent surveys conducted by research
divers. During the dives, the shell length of individual abalone were
measured, allocated a numbered tag, and carefully returned to the
same location, or at least proximal to where it was collected. Tagged
abalone were then left at liberty for approximately one year before
being removed and shell length measured. Growth increment data
from different sites was  accumulated in this way over a 15 year
period, 1994–2008 by the Tasmanian Aquaculture and Fisheries
Institute of the University of Tasmania (now part of the Institute

for Marine and Antarctic Studies).

Data collected in different years from the same site were treated
as separate samples for two  reasons: (1) multi-year samples were
not assumed to be identical and (2) growth parameters are assumed
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o be temperature variant; temperatures vary over time and tem-
eratures may  affect growth rate (Gilroy and Edwards, 1998).
he possible effect of temperature was especially important as
t is widely accepted that growth of poikilothermic species (e.g.
balone) may  be affected by change in water temperatures. There-
ore, it appears likely that mean somatic growth within a population

ay  differ between years.
Four criteria had to be met  for samples to be included in the

nalysis:

i. the sample must include juveniles to define the full growth
curve, i.e. <100 mm shell length,

ii. large abalone with negligible or no growth increments had to
be included in the sample so that the full range of growth was
included,

ii. the time increment between mark and recapture was approxi-
mately one year (between 0.9 and 1.2 years),

v. sample size was greater than 90 recaptures.

After applying the four data screening criteria, 27 samples were
vailable for this study.

Negative increments were found to affect the parameters of the
on Bertalanffy growth model (Sainsbury, 1980) so to minimize
his effect, data with length increments greater than −3 mm were
emoved (−3 mm was selected to allow for some sampling error
hile only removing a minimum number of observations). Nega-

ive increments had negligible effects on model parameters fitted
o the Gompertz and inverse logistic models (unpublished data).
ecause time increments are not explicit in the inverse logistic
odel, length increments were standardized for the time-at-liberty

y dividing the observed length increment by the observed time-
t-liberty (i.e. between 0.9 and 1.2 years) to normalize the length
ncrements to one year exactly.

.3. Growth models

The deterministic forms of the three candidate growth models
nclude

a) re-parameterized, size-based analogue of the von Bertalanffy
model for tag-recapture data used for estimating length incre-
ments from time increments (Fabens, 1965) (Fig. 1):

von Bertalanffy (VB) : �L̂i = (L∞ − Li)(1 − e−K �t) + ε (1)

b) the re-parameterised Gompertz (Troynikov et al., 1998) for esti-
mating length increments from time increments (Fig. 1):

Gompertz (Gz) : �L̂i = L∞
(

Li

L∞

)exp(−g �t)
− Li + ε (2)

c) the inverse logistic model (Haddon et al., 2008), which assumes
all size increments relate to the same time increment (Fig. 1):

inverse logistic (IL) : �L̂i = Max �L

1 + eLn(19)((Li−L50)/(L95−L50)) + ε

(3)

where �L̂i is the expected length increment for individual i, L∞
is the shell size where the mean length increment is zero (VB &
Gz), Li is the initial length for individual i when first tagged and
released, K is the “destruction constant”, (von Bertalanffy, 1938,
p186) (VB), g > 0 (Gz), �t  is the time at liberty (as a fraction of a
year; VB & Gz), Max  �L  is the maximum length increment, L50
is the initial length at 0.5 times Max  �L,  L95 is the initial length

at 0.05 times Max  �L.

The 19 in Ln(19) implies that the L95 parameter relates to the
5% point (Ln(15) would equate to the 75% point) (Haddon et al.,
esearch 112 (2011) 13– 21 15

2008). The constant ε’s are independent additive normal random
error terms. Using an identical error structure for all three models
simplifies their statistical comparison.

2.4. Model selection using statistical criteria

The optimal growth model was identified using three statistical
criteria. The first criterion involved identifying the model with the
minimum negative log-likelihood estimate (the best fitting model).
In each case the minimum log-likelihood function based on length
increments was,

−LL = −
n∑

i=1

Ln

(
1

�
√

2�
exp

(
−
[

(�Li − �L̂i)
2

2�2

]))
(4)

where �Li is the observed growth increment for each of the i = 1 to
n observations at each site, �L̂i is the predicted growth increment
for observation i from one of the three candidate growth models
(Eqs. (1)–(3)),  and � is the standard deviation of the normal random
errors. Rogers-Bennett et al. (2007) used least squared residuals
when comparing six candidate models; in an equivalent manner
we used normal random residuals errors. However, the use here
of a maximum likelihood framework simplified the use of model
selection methods and permitted the use of Akaike weights. The
negative log-likelihood (−LL) was  minimized in each case using
the ‘optim’ function in R (R Development Core Team, 2008).

The growth models considered are simple low dimensional
models described by only a few parameters. This makes it
straightforward to locate the global minimum of the negative log-
likelihood for each model (Sorensen and Gianola, 2002).

The second criterion was  to identify the model with the smallest
Akaike Information Criteria (AICmin). The AIC balances the trade-
off between the quality of fit and the number of parameters used
(Burnham and Anderson, 2002) and is defined as AIC = −2 × LL + 2 K,
where K is the total number of parameters (including �2) and
−2 × LL is two times the negative log-likelihood at its optimum.
The relative quality of fit of the three candidate growth models
was determined for multiple sites in order to select the statistically
optimum model for the majority of populations.

The third criterion was  to determine the relative weight of
evidence for each model (AICi, including the sub-optimum and opti-
mum  models) relative to the optimum model (AICmin), using Akaike
weights (wi) (Buckland et al., 1997). These are defined by first cal-
culating the relative AIC values, �i = AICi − AICmin, where i indexes
the three growth models, and substituting these into the expression

wi = exp(−0.5�i)∑3
i=1exp(−0.5�i)

(5)

2.5. Biological plausibility of growth model parameters

When examining the link between growth parameters and
biology, two biological characteristics were used: median shell
length of adults and size at maturity. For the median length, the
percentage difference was  calculated between estimates of the
parameter values and the median length of catch; percent differ-
ence = 100 × (P − M)/P, where P is the estimated parameter and M
is the median catch.

The L∞ of the von Bertalanffy and Gompertz represents the ini-
tial shell length where the predicted mean increment is zero. The
L∞ of the von Bertalanffy and Gompertz models does not represent
the asymptotic maximum shell length of the abalone population

(Ratkowsky, 1986). Instead it represents the mean of the distribu-
tion of maximum lengths for the population as a whole (Sainsbury,
1980). The L95 of the inverse logistic is consistently close to the
shell lengths where growth increments become small. Assuming
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Table 1
Growth parameters for length increment data from 27 samples of blacklip abalone (Haliotis rubra); s.d. is the standard deviation. Three growth models, the von Bertalanffy,
Gompertz and inverse logistic were fitted to 27 samples of tag-recapture data using maximum likelihood. Samples that differed in space and time were treated as separate
samples.

Site Sample size Latitude Longitude Year von Bertalanffy Gompertz Inverse logistic

L∞ K s.d. L∞ g s.d. Max  �L  L50 L95 s.d.

59 134 −41.57 148.32 1994 151 0.464 5.4 148 0.587 5.4 24.2 118 157 5.4
59 330 −41.57 148.32 1996 157 0.447 5.3 153 0.583 5.3 28.8 117 167 5.3

159  119 −42.58 148.05 1994 160 0.356 3.8 158 0.445 3.8 20.9 126 168 3.8
159  91 −42.58 148.05 1996 175 0.305 6.8 169 0.411 6.7 18.4 139 169 6.6
170  92 −41.17 144.67 1995 141 0.316 3.1 140 0.385 3.1 14.2 116 146 3.1
272  203 −42.61 145.26 2001 162 0.358 3.6 161 0.420 3.7 26.3 120 163 3.4
297 271 −42.2  148.35 2003 152 0.386 4.9 147 0.534 4.8 24.0 115 152 4.6
300 114 −41.74  148.3 2003 164 0.484 5.7 157 0.680 5.4 30.0 123 157 4.9
313  389 −40.5 144.7 2001 128 0.286 3.4 127 0.348 3.6 17.9 92 128 3.3
314  434 −39.93 143.83 2001 147 0.347 4.4 145 0.444 4.5 21.1 112 149 4.3
315  207 −39.69 147.88 2001 121 0.346 2.9 119 0.432 3.1 20.0 87 121 2.7
316  232 −40.73 148.12 2001 139 0.349 4.1 136 0.457 4.2 25.7 96 147 4.1
337  144 −42.87 147.94 2003 141 0.291 4.5 136 0.407 4.3 17.1 108 138 4.1
458  118 −42.96 145.49 2003 172 0.260 4.1 164 0.386 3.7 19.9 131 167 3.5
459  132 −43.48 146.02 2003 155 0.325 2.5 155 0.368 2.6 15.4 128 155 2.4
460  90 −43.07 145.66 2003 164 0.358 4.6 162 0.436 4.6 19.9 131 160 4.3
461 163 −43.11  147.38 2003 173 0.352 4.6 162 0.544 4.4 29.5 122 173 4.3
478  347 −43.54 146.99 2003 145 0.357 3.9 140 0.499 3.7 22.3 110 146 3.6
480  151 −43.56 146.89 2003 136 0.479 4.2 134 0.613 4.3 30.0 97 137 3.9
482  135 −43.11 147.397 2003 150 0.576 4.3 148 0.702 4.3 27.6 118 154 4.2
588  118 −40.92 148.32 2003 171 0.282 4.3 163 0.407 4.1 20.6 127 162 3.8
662 112 −40.86  145.51 2006 102 0.232 2.9 102 0.276 2.9 10.1 78 97 2.8
663  114 −43.04 147.48 2007 128 0.508 4.3 127 0.619 4.5 32.2 88 134 4.0
702 257 −43.14 147.39 2006 163 0.398 5.0 160 0.507 5.0 31.8 115 178 5.0
764  226 −43.14 147.68 2006 166 0.381 3.9 159 0.531 3.9 27.3 123 174 3.9
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813  167 −43.51 146.98 2008 141 0.
819  97 −41.76 145 2008 141 0.

 normal distribution for the L∞ and L95, the most relevant bio-
ogical estimate that could be compared to these parameters is the

edian length of catches. These are obtained annually from fishery-
ependent commercial surveys and represent the median length of
shed adult abalone from year to year. A range of median length
stimates was accumulated over the years. In some years size selec-
ive fishing occurs where divers exclude very large abalone. This
ill affect year-to-year estimates of median length of catches caus-

ng a downward bias. To overcome this potential bias, only the
aximum value within the range of median estimates was used

or comparison with the L∞ and L95 parameters. Fishing locations,
or which median shell-length data were available, were matched
s closely as possible to the locations of the tagging survey sites.
he median shell length of catches was reported for 18 samples
Table 3). Parameter estimates of L∞ (from the von Bertalanffy and
ompertz) and L95 (from the inverse logistic model) were com-
ared with median shell length data using ANOVA.

The L50 parameter of the inverse logistic model is the initial
hell-length at which the decline in growth rate is most rapid
Haddon et al., 2008). Declines in growth rate are associated with
he onset of maturity as energy is transferred from somatic growth
o reproductive investment and a reduction in shell growth rate
s expected (Lester et al., 2004). This decline in growth rate was
laimed to be biologically implausible in red abalone (H. rufescens)
n northern California, as the decline in growth rate was  consid-
red to be too rapid (Rogers-Bennett et al., 2007). To explore if
his rapid decline in growth rate is biologically valid in blacklip
balone, population estimates of size-at-maturity were compared
ith population estimates of the L50 parameter from the inverse

ogistic model (where L50 is the shell length where 50% of the
opulation is mature). In total, eight sites (each representing a dif-

erent population) were extracted from the database where each
ite had data for both growth and maturity taken at the same time
Fig. 2). The L50 parameter estimates were calculated for each site
s well as the corresponding size-at-maturity (SM50) and potential
3.0 140 0.297 2.8 13.2 112 132 2.6
2.9 141 0.377 3.0 21.1 105 141 2.7

differences between these two variables were examined using a
one-way ANOVA.

Finally, to demonstrate whether the selection of growth models
has implications for the population dynamics, the age-at-maturity
was calculated for the eight sites with size-at-maturity data using
all three growth models. The earlier a species reaches maturity the
shorter the expected generation time and hence the higher the
expected productivity. These ages were determined as the time
taken for 2 mm  size animals to grow to the size-at-maturity.

3. Results

3.1. Statistical fit

The best fitting parameters of all three models exhibited wide
variation around Tasmania (Table 1) and results clearly indicate
that the inverse logistic is statistically optimal over a range of
growth rates. The AIC values (Table 2) indicate that the inverse
logistic model was statistically optimal in 21 samples out of the 27
samples of length-increment data considered. Both the von Berta-
lanffy and the Gompertz models were the best fitting models in only
three samples each. In all cases, the ordering of the Akaike weights
matched the minimum AIC, however, there were large differences
in Akaike weights between the best inverse logistic model and
best von Bertalanffy or Gompertz model (Table 2). The high Akaike
weight values (wi > 0.8) for the best inverse logistic model (e.g. sites
272–315; 337–663; 813 and 819, n = 20 sites with wi > 0.8; Table 2)
indicate that the best fitting inverse logistic models are generally
more certain than the best fitting von Bertalanffy or Gompertz.
The maximum Akaike weights ranged between 0.15 and 0.44 for
the von Bertalanffy and Gompertz collectively, and indicate more

uncertainty for the von Bertalanffy or Gompertz when either was
the best fitting models in the presence of other candidate models.

As juveniles approach maturity energy is partitioned away from
somatic growth toward reproductive development (Lester et al.,
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Table  2
Information criteria associated with statistical model selection. Three growth models: von Bertalanffy (VB), Gompertz (Gz) and inverse logistic (IL), were fitted to 27 samples
of  tag-recapture data. Samples that differed in space and time were treated as separate samples.

Site Year Log likelihood AIC Minimum Akaike weights

VB Gz IL VB Gz IL AIC VB Gz IL

59 1994 416 416 415 838 838 839 Gz 0.31 0.46 0.23
59  1996 1020 1020 1019 2046 2046 2047 Gz 0.34 0.37 0.29

159 1994 329 329 329 664 664 666 VB 0.49 0.36 0.15
159  1996 304 303 301 614 612 610 IL 0.08 0.27 0.65
170  1995 235 235 234 476 476 477 VB 0.4 0.33 0.27
272  2001 547 555 539 1100 1117 1087 IL 0 0 1
297 2003 815 808 798 1636 1622 1604 IL 0 0 1
300 2003 359 353 344 724 713 696 IL 0 0 1
313 2001 1033 1046 1022 2072 2098 2051 IL 0 0 1
314  2001 1263 1265 1246 2532 2536 2499 IL 0 0 1
315  2001 516 526 502 1038 1059 1011 IL 0 0 1
316  2001 656 660 654 1317 1325 1316 IL 0.3 0.01 0.69
337  2003 421 414 408 847 833 823 IL 0 0.01 0.99
458 2003 333 321 315 673 648 638 IL 0 0.01 0.99
459  2003 309 311 302 625 628 612 IL 0 0 1
460 2003 264 266 259 534 538 527 IL 0.02 0 0.97
461  2003 479 472 469 963 950 946 IL 0 0.09 0.91
478 2003 962 947 936 1930 1900 1880 IL 0 0 1
480  2003 432 436 420 871 878 848 IL 0 0 1
482  2003 388 388 384 782 783 776 IL 0.04 0.03 0.93
588  2003 339 335 326 684 675 660 IL 0 0 1
662  2006 278 279 275 562 564 558 IL 0.09 0.04 0.88
663 2007 327 332 320 661 671 649 IL 0 0 1
702  2006 777 778 776 1559 1562 1560 VB 0.52 0.11 0.37
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764 2006 631 629 628 1268 

813  2008 419 412 395 844 

819  2008 240 245 235 485 

004), resulting in an associated decline in somatic growth rates for
arger size juveniles that appears to be non-linear (Fig. 3). Accord-
ngly, the inverse logistic model is also able to capture the decline in
rowth rate for juveniles approaching maturity. The inverse logis-
ic model is thus biologically consistent with the data insofar as it
escribes both constant and non-constant growth rates that may
ccur over the entire size range of the juvenile size classes. Note that
ithin a given population, the size that constitutes small juveniles
eeds to be considered relative to the SM50 for that population,
.g. in Fig. 3, site 458, the growth of a 60 mm size abalone is pre-
ominantly somatic and is likely not confounded by reproductive
evelopment because it is far from the onset of maturity. By con-
rast, in site 315, a 60 mm abalone is likely approaching the onset
f maturity and resources are thus divided between somatic and
eproductive investment. It is expected that different samples will
ave different trajectories in the growth rate of abalone that are,

or example, 60 mm in initial shell length, and this is a result of the
ize differential in the onset of maturity.

.2. Biological plausibility

The estimated median shell lengths were proximal to the L∞
arameters of the von Bertalanffy and Gompertz, and the L95 of the

nverse logistic (Table 3). Overall, the maximum difference between
he median shell length and the parameter value (as a percentage
f the parameter value) was within 20% of the parameter value
owever the majority of samples were within 10% (15, 17 and
3 samples where within 10% for the von Bertalanffy, Gompertz
nd inverse logistic models respectively). For some sites there was
trong agreement between the model parameters and the maxi-
um  length of catch (sites 170, 272, 460, and 482). For other sites

159, 337, 461, 480, 663 and 819) the percent difference ranged

rom −15.4% to 14.5% for von Bertalanffy, −17.2% to 10.7% for Gom-
ertz, and −14.6% to 16.9% for the inverse logistic. Even so, there
ere no significant differences between the L∞ and L95 parameters

nd the median shell length (p > 0.05).
1263 1264 Gz 0.06 0.5 0.44
829 797 IL 0 0 1
496 477 IL 0.01 0 0.99

There was no significant difference between the L50 parameter
of the inverse logistic and the size-at-maturity (SM50) (p = 0.442).
Given only eight pairs of observations there was a strong correla-
tion between the L50 of the inverse logistic model and the SM50
(r = 0.891, p < 0.01; Table 3, Figs. 3 and 4).

The von Bertalanffy model consistently resulted in the lowest
estimates in age-at-maturity compared to the other growth mod-
els (Table 3). However, the trend in relative difference between
sites was  generally similar between growth models. The two most
widely used growth models (i.e. the von Bertalanffy and Gompertz)
produced the most disparate results differing by 2–3 years. The
inverse logistic produced estimates that were consistently between
the range of the von Bertalanffy and Gompertz.

4. Discussion

For many fisheries, particularly fin-fish, the stock is consid-
ered to consist of one biologically homogenous population and
the dynamic pool assumption applies (Pitcher and Hart, 1982). In
contrast, the Tasmanian abalone fishery consists of hundreds of
spatially explicit stocks which are ecologically dissimilar at fine
spatial scales (tens or hundreds of metres) (Nash, 1992; Prince et al.,
1987). It is therefore not feasible to impute growth parameters from
one population onto another population.

The sites selected encompassed a diversity of geographic regions
and resource states which is an important component of field sam-
pling (Krebs, 1989). Two key factors that determine the diversity
of resource states are food and habitat and both may influence
the growth rate of blacklip abalone (Saunders and Mayfield, 2008).
The geographical scale of the analyses presented in this study cap-
tures the naturally high levels of variation in growth in spatially
discrete abalone populations, under widely varying environmental

conditions. It is evident from the variability in growth parameters
(Table 1) that the samples used in the analysis were representa-
tive of a wide diversity of resource states. Results demonstrate
the inverse logistic is consistently selected as the optimal growth
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ig. 3. Relationship between the estimates of size-at-maturity (SM50, initial shell
arameter of the inverse logistic model (solid vertical line) for eight sites. For each s
ach  plot alongside the year (in brackets) the data were collected. The fitted growth

odel in populations that occur across a range of environmental
onditions. Although the sites sampled do not cover the entire geo-
raphic range of this species, the consistently favourable AIC, over
he von Bertalanffy and Gompertz, clearly demonstrate the robust-
ess of the inverse logistic to various resource states and can be
otentially used for other regions. The inverse logistic may  also
e recommended for other species of abalone given that a growth
odel with a similar trajectory was also statistically optimal in

 population of red abalone (H. rufescens) in California (Rogers-
ennett et al., 2007).

A strength of this study is that numerous populations were con-
idered relative to other studies on wild abalone growth. The only
ther study of comparable scale was conducted in New Zealand,
here 30 sites were also examined for growth (Naylor et al.,

006). Other similar Australian studies consist of fewer sites, e.g.
6 sites in South Australia (Saunders and Mayfield, 2008) and
even sites in NSW (Worthington et al., 1995). Overseas studies
ave far fewer populations owing to a relatively small geograph-

cal extent of these fisheries, e.g. six sites in a study of Haliotis
idae in South Africa (Tarr, 1995) and only one population in a
rowth study from California USA (Rogers-Bennett et al., 2007).
ith fewer sites there is a greater potential for sampling more

dequately, however if unchecked there is also the possibility that
iological conclusions may  be biased by data that misrepresent the
h at which 50% of the populations was mature) (dotted vertical line) and the L50

wth and maturity data was collected in the same year. Site numbers are shown on
e in each case is the inverse logistic.

biology through sampling error due to low size range or low sample
size.

Biological validity is important in model selection because if
the candidate set of models is biologically arbitrary (for example
a polynomial could be used to describe mean growth increments)
it is still possible to obtain a statistically optimum model based on
AIC estimates. The AIC estimates only evaluate the relative statis-
tical fit of the candidate models presented (relative to each other).
The best-fitting statistical model, identified as the one with lowest
relative AIC value, may  still be biologically implausible if it lacks
realism. Every effort should therefore be made to gain relevant bio-
logical knowledge of the models relative to the species in question
before establishing an a priori set of candidate models (Burnham
and Anderson, 2002).

Recently the inverse logistic growth has been proposed as a can-
didate growth model for abalone populations (Haddon et al., 2008).
In a study of H. rufescens in northern California the dose–response
model (a growth model visually similar to the inverse logistic
model) was  statistically the best fitting model, based on AIC results
(Rogers-Bennett et al., 2007). However the dose–response model

was rejected on the basis that the sharp transition in growth rate
from constant growth in juveniles to slow growth in adults was
not considered biologically plausible. The inverse logistic has a
similar rapid transition and this transition appears to represent
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Table  3
Biological plausibility of model parameters for three growth models (von Bertalanffy (VB), Gompertz (Gz) and inverse logistic (IL)). Estimated values between median lengths
of  catches correspond to the parameters of three growth models that describe maximum shell length (L∞ for both the von Bertalanffy and Gompertz and L95 for the inverse
logistic). Estimated values of size at maturity (SM50) correspond to the parameter of the inverse logistic model where the growth rate declines most rapidly (L50). Each of the
three  growth models were fitted to tag-recapture data for 27 populations. The median length of catches represents the median length of adults in the population collected
over  a six year period between 2004 and 2009. Only the maximum values of the range collected over the six year period are presented. The age at maturity (AM50) is presented
only  for samples that had growth and maturity data collected from the same point in time and space.

Site VB Gz IL Median length
catch (mm)

IL Size at maturity Age at maturity

L∞ (mm) L∞ (mm)  L95 (mm) L50 (mm)  SM50 (mm) VB  Gz IL

59 151 148 157 – 118
59  157 153 167 – 117 107 2.9 4.8 4.3

159  160 158 168 150 126
159 175 169 169 151 139
170 141 140 146 145 116
272 162 161 163 162 120 126 4.5 7.4 5.6
297 152 147 152 149 115
300 164 157 157 – 123
313 128 127 128 – 92 98 5.0 7.9 6.3
314 147 145 149 – 112 103 3.4 5.6 5.0
315  121 119 121 – 87 95 4.5 6.8 5.6
316  139 136 147 – 96 98 3.6 5.7 4.4
337  141 136 138 154 108
458  172 164 167 162 131 128 5.4 7.6 6.7
459 155 155 155 163 128
460  164 162 160 159 131
461 173 162 173 148 122
478 145 140 146 157 110
480  136 134 137 157 97
482 150 148 154 148 118
588 171 163 162 – 127 116 4.4 7.0 6.3
662 102 102 97 – 78
663 128 127 134 146 88
702 163 160 178 148 115
764 166 159 174 147 123

t
b
t
m
2
t

F
fi
w
s

813 141 140 132 150 

819 141 141 141 157 

he size where growth increments are decreasing due to resources
eing allocated away from somatic growth and toward reproduc-

ive development (Fig. 3). It is possible that the onset of maturity

ay  result in a rapid decrease in somatic growth rate (Lester et al.,
004) and this is clearly demonstrated here (Fig. 3). Furthermore
he strong correlation between the L50 parameter of the inverse

ig. 4. Correlation between size at maturity (SM50) and the L50 of the inverse logistic
tted to tag-recapture data for eight populations where growth and maturity data
ere collected in the same site and year. The correlation coefficient of r = 0.890 is

ignificant at p < 0.01 (n = 8).
112
105

logistic model and the SM50 in the present study (Fig. 4) supports
the biological validity of the inverse logistic model for blacklip
abalone in Tasmania.

The inverse logistic model is able to describe both constant ini-
tial growth increments as well as a non-linear decline in growth
rates of larger juveniles as they approach maturity. The inverse
logistic is thus biologically plausible for the entire juvenile size
range as well as being statistically optimal. The von Bertalanffy
and Gompertz are also consistent with the non-constant decline in
growth rates of larger juveniles but were not statistically optimal
(Table 2). This does not eliminate the von Bertalanffy and Gompertz
as suitable growth models, although it does demonstrate that the
inverse logistic, being only recently implemented and previously
untested, is biologically and statistically a sound candidate growth
model; this has not previously been demonstrated for growth tra-
jectories that incorporate constant growth rates in small juvenile
size classes.

This study therefore partly overcomes one problem of model
uncertainty – the thin choice in model selection (Katsanevakis and
Maravelias, 2008). This may  lead to “retrospective regret” in model
selection because a larger range of plausible models was not con-
sidered (Hamilton et al., 2007; Katsanevakis and Maravelias, 2008).
Historically, there has been strong reliance on the von Bertalanffy
model to characterize growth and if the von Bertalanffy was not the
best fitting model, then typically the Gompertz was selected, effec-
tively by default. This study provides clear evidence that the inverse
logistic model can be a plausible growth model thereby improving
the degrees of freedom in the choice of candidate models.

A well known disadvantage of the deterministic Faben’s ver-

sion of the von Bertalanffy is that parameter estimates are biased
if the growth variation of individuals is ignored (Eveson et al.,
2007; Sainsbury, 1980; Wang and Thomas, 1995). The issue of the
biases has been researched extensively for over 30 years (Sainsbury,
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980). A solution is to use probability density functions (pdfs)
round the k and L∞ parameters (Eveson et al., 2007; Troynikov,
998). However, this solution leads to the practical disadvan-
age concerning the difficulty in incorporating probabilistic growth

odels into stock assessments. This means that the inherently
iased von Bertalanffy continues to be used because of its relative
implicity. The deterministic Gompertz model may  be used to over-
ome this bias and also other model options are readily available
hat could be considered and tested (Rogers-Bennett et al., 2007).

Although the Gompertz may  be an alternative to the biased von
ertalanffy another well known disadvantage to both deterministic
odels is that they predict negative growth increments (Sainsbury,

980; Troynikov, 1998). For many species negative growth is bio-
ogically implausible, and fitting these models to data that includes
egative increments may  skew parameter estimates. The deter-
inistic von Bertalanffy and Gompertz models require pdfs around

he L∞ in order to avoid predicting negative increment for larger
ize classes. The inverse logistic model achieves this without requir-
ng a pdf around its parameters.

A disadvantage of the inverse logistic is that it requires data
rom small juvenile size classes to define the Max  �L  parameter.
he deterministic von Bertalanffy and Gompertz models have the
dvantage of being simpler to use than the inverse logistic and are
ess demanding in their data requirements. However, this needs to
e evaluated against the disadvantage of parameter biases and/or
redictions of negative growth. The inverse logistic may  be equally
ppealing insofar that it does not predict negative growth incre-
ents and is therefore easier to implement than the probabilistic

on Bertalanffy or Gompertz thereby offering the same advantage
s these probabilistic models without the complications.

The main advantage of the inverse logistic is that it is consistent
ith the description of growth from observed data for juvenile size

lasses of abalone. This model has also been used to describe the
rowth increments of echinoderms in Australia (Ling et al., 2009)
nd rock lobsters in New Zealand (Starr et al., 2009).

In summary, the problem of bias and or negative growth incre-
ents is an issue for tag-recapture data of any species. Overall,

he advantages of the inverse logistic outweigh the disadvantages
hen evaluated against the biases of the von Bertalanffy and the
egative growth predictions of the both the von Bertalanffy and
ompertz.

The selection of a growth curve has implications for stock
roductivity and may  influence many aspects of the population
ynamics of a species. For example, the Gompertz model con-
istently estimates relatively older age-at-maturity, which would
mply lower productivity than predicted by the von Bertalanffy,

hich consistently predicted younger age-at-maturity. The pro-
uctivity of the stock implied by the inverse logistic model, as

ndicated by the age-at-maturity, would be intermediate between
he Gompertz and the von Bertalanffy models. Estimates of age-
t-maturity are used in age based stock assessment model for
alculating spawning biomass. While age-at-maturity is only one
f many potential implications of growth model selection on the
opulation dynamics of the species concerned, the large differ-
nces in relative productivity predicted by different growth models
learly demonstrate the importance of defensible model selection
echniques.

This paper resolved the problem of selecting a growth model
mong the main candidate models across many population sam-
les. Previously the majority of studies of growth in abalone have

ndiscriminately used the Gompertz, the von Bertalanffy or variants
f them (probability distribution on some of the parameters) or the

chnute growth model (which usually defaulted to the von Berta-
anffy or Gompertz equivalents). To further characterize variation,
nd potentially include samples that were excluded by the data
creening criteria, it may  now be useful to use a Bayesian analysis
esearch 112 (2011) 13– 21

of a hierarchy of inverse logistic models. Such a Bayesian approach
may  be applied now that an optimum model structure has been
identified.

5. Conclusion

The inverse logistic model adequately describes the growth
of blacklip abalone populations over the geographic range of the
species in Tasmania. The inverse logistic model was selected as
the best statistically fitting model for many more sites and out-
performed the von Bertalanffy or Gompertz. Akaike weights for
when the inverse logistic was the best fitting model were also high
leading to more confidence in the selection of this growth model.
This finding is limited to models fitted to data with normal ran-
dom errors. Nevertheless, not only did the inverse logistic fit the
data well but the model parameters were biologically plausible. It is
recommended that the inverse logistic be used in stock assessment
modelling where a description of growth is included, because the
von Bertalanffy or Gompertz growth models may introduce biases.
The inverse logistic model is suitable for all abalone species includ-
ing H. rufescens in the USA. The inverse logistic may  also be suitable
for any species that are difficult to age including rock lobster (Starr
et al., 2009) and sea urchins (Ling et al., 2009).
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