BIO-MATE: A biological ocean data reformatting effort

Biological ocean data collected from ships find reuse in aggregations of historical data. These data are heavily relied upon to document long term change, validate satellite algorithms for ocean biology and are useful in assessing the performance of autonomous platforms and biogeochemical models. There is a need to combine subsurface biological and physical data into one aggregate data product to support reproducible research. Existing aggregate products are dissimilar in source data, have largely been isolated to the surface ocean and most omit physical data. These products cannot easily be used to explore subsurface bio-physical relationships. We present the first version of a biological ocean data reformatting effort (BIO-MATE, https://gitlab.com/KBaldry/BIO-MATE). BIO-MATE uses R software that reformats openly sourced published datasets from oceanographic voyages. These reformatted biological and physical data from underway sensors, profiling sensors, pigments analysis and particulate organic carbon analysis are stored in an interoperable and reproducible BIO-MATE data product for easy access and use.

Background & Summary

Marine phytoplankton blooms support ocean food-webs and influence global climate through the biological carbon pump (¹;²:³). Ocean physics and other environmental drivers control the timing, magnitude and extent of phytoplankton blooms through complex biophysical relationships (⁴;⁵;⁶;⁷). To study these relationships integrated data structures that link biological and physical ocean data are needed. Ship-based data are the gold standard for accurate biological oceanographic measurements (⁸). These data are often published separately to physical ocean data, stored across different repositories and in multiple formats. This makes it difficult and time-consuming to aggregate and link biological and physical data product attempts to make this task easier.

The biological ocean data reformatting effort (BIOMATE) works to link existing, openaccess biological and physical datasets across oceanographic voyages and promote their reuse. This has been done by developing a BIOMATE R software package that not only reformats published datasets, but also cross-references between biological and physical data and allows access to citation information (https://github.com/KimBaldry/BIOMATE-Rpackage). The resulting BIOMATE data product allows users to easily access, manipulate and cite published ship-based datasets of different dimensions for multiple applications.

The BIO-MATE data product can be accessed via the Australian Ocean Data Network (https://portal.aodn.org.au/). The aggregation includes data collected from shipboard underway sensors, profiling sensors mounted on sampling rosettes, lab analysis for phytoplankton pigments and lab analysis for particulate organic carbon (POC). These data are stored as four data streams, cross-referenced by unique expedition codes (EXPOCODE) and profiling station identifications (CTD_ID). An additional data stream contains supporting information for the data product including a list of oceanographic voyages, investigator contact information and data citations for reformatted datasets. We have also included an aggregated data table for biological data. Users are required to refer to supporting data and cite all data products accessed through BIO-MATE, as well as the BIO-

MATE data product itself. We consulted the distribution licenses of all data sources to ensure that with this condition data are re-used lawfully.

The data product is currently has been used to understand how the response of in-situ fluorometers changes in the Southern Ocean and to investigate the role of ocean physics in mediating subsurface chlorophyll features (Baldry *et al.* in prep). These examples highlight the malleability of this data product to improve our understanding of biological oceanography in the Southern Ocean. Further uses include validating satellite observations (⁹;¹⁰), developing new ways to validate in-situ bio-optical observations collected by autonomous profiling platforms in the presence of dynamic fronts (¹¹;¹²;⁸), training ocean state estimations (¹³), informing bio-physical models and using multi-variate analyses to understand bio-physical relationships.

We recognise the massive effort in producing the thousands of data records in this data product. This includes the investigators and data officers who have spent countless hours in ship time, project organisation, grant writing, laboratory analysis, data processing and report writing. Oceanographic data are often collected with regional studies in mind, but their value increases with publication and re-use. We encourage all investigators to publish their data for re-use through data products like BIO-MATE.

Methods

Published datasets in BIO-MATE

The BIO-MATE aggregate data product brings together ship-based data that have been collected by a Principal Investigator (PI) and published by a to a publicly accessible database (Figure 2). The first version of BIO-MATE includes published datasets associated with four types of measurements:

- 1. sensors in the vessels underway seawater in-take (underway sensor data stream),
- 2. profiling sensors mounted to sampling rosettes (profiling sensor data stream),
- 3. pigments measured in the laboratory (pigment data stream), and
- 4. POC measured in the laboratory (POC data stream).

Data records from the pigment data stream were first identified in data repositories that host biological data (November 2019). Pigment data records were identified using the search term "chlorophyll" and a latitude bound of 30 °S to 90 °S from PANGAEA (https://www.pangaea.de/), SeaBASS (https://seabass.gsfc.nasa.gov/), the Australian Ocean Data Network (AODN, https://portal.aodn.org.au/), GLODAP (https://www.glodap.info/), the Palmer Long Term Ecological Record (Pal-LTER, https://pal.lternet.edu/data), the Biological and Chemical Oceanography Data Management Office (BCO-DMO, https://www.bco-dmo.org/data), the CSIRO Marlin Data Trawler (Marlin, https://www.cmar.csiro.au/data/trawler/) and the Australian Antarctic Data Center (AADC, https://data.aad.gov.au/). Data records from the profiling sensors and underway sensors data streams were then identified in these repositories and in the CCHDO (https://cchdo.ucsd.edu/) and MGDS (https://www.marine-geo.org/).

From pigment data records, 178 relevant voyages were identified using unique 12-digit expedition codes (EXPOCODES) assigned as follows; National Oceanographic Data Centre (NODC) platform codes followed by voyage 8 digit start dates (YYYYMMDD). NODC platform and country codes are recorded on Git Hub (https://github.com/KimBaldry/BIO-MATE/product_data/supporting_information/codes) and within the BIOMATE software (https://github.com/KimBaldry/BIOMATE-Rpackage/inst/codes). If the vessel name or voyage start/end dates were absent, this information was found using Google to discover voyage records. This voyage information was used to do a final Google keywords search (i.e. ship name, synonyms for voyages, year, "underway"/ "CTD", "chlorophyll", "POC", "cruise report" and "data") to determine any absent records and to discover accompanying cruise reports.

Semi-automated BIO-MATE workflow for reformatting datasets

A semi-automated workflow and the BIO-MATE R software

(https://github.com/KimBaldry/BIOMATE-Rpackage) were used to reformat published datasets, and produce the BIO-MATE data product (Figure 3). Downloaded data files were split by EXPOCODES if they recorded data within a larger dataset (e.g PALMER-LTER data records). Files for the profiling sensor data stream were further split into individual profiles. Processing metadata were manually entered into a table to inform the BIO-MATE R software and a bulk run of the software was performed to reformat data files. The workflow is described in more detail in the following subsections (Figure 2).

Download of published datasets

Published datasets were manually downloaded from open source repositories and stored locally in accordance with data policies. Some manual reformatting of a small portion of downloaded data had to be performed on old datasets, prior to the application of reformatting scripts, due to formatting irregularities. Downloaded data files, and their amendments, used to create the BIO-MATE data product are not published in BIO-MATE, but are available upon request to the corresponding author.

Splitting large datasets with BIO-MATE software

The BIO-MATE R software requires each file to only contain observations from a single voyage. Further, the profiling sensor data stream requires each file to only contain observations from a single profiling cast, held in a discrete directory for each voyage.

The *split_delim_file* function splits files using identified variables containing EXPOCODE synonyms and/or profiling station information. This function can be used to split a single, large data file into smaller files as required. For this version of the data product, a number of files had to be split to be ingested into the BIO-MATE core functions. A record of these can be found in Git Hub in the project notebook (https://github.com/KimBaldry/BIO-MATE/blob/main/BIO-MATE.Rmd).

Processing metadata

Information on file formats, dataset information, citation information, location data variables and ocean data variables are needed to reformat published datasets with BIO-MATE software. This information is called processing metadata herein, and was manually entered and stored as comma delimited text files. The processing metadata required to run BIO-MATE software is described in Table 1, and differs for each data stream. All processing metadata used to construct the BIOMATE aggregated data product is stored in Git Hub (https://github.com/KimBaldry/BIO-

MATE/tree/main/product_data/processing_metadata).

Dataset citation with BibTEX files

Information is included in the BIO-MATE data product, for citing published datasets, laboratory analysis methodologies (for the PIG and POC data streams) and the data repositories through which published data records were accessed. Each citation was recorded as a BibTeX entry, compatible with EndNote, R and LaTeX. Each BibTeX entry has a tag that is referenced in the processing metadata. This tag is used to link citations to their corresponding data records when datasets are ingested in the BIO-MATE software. Citation information is then printed in the header information in reformatted files. Where possible BibTeX entries were sourced from data repositories. If BibTeX entries were not found, they were created manually.

All BibTeX entries are stored on Git Hub (https://github.com/KimBaldry/BIO-MATE/product_data/supporting_information/citations) and in the BIOMATE software (https://github.com/KimBaldry/BIOMATE-Rpackage/inst/citations). A look-up table is included in the BIO-MATE software to help users find relevant BibTeX entries needed to cite datasets appropriately (https://github.com/KimBaldry/BIOMATE-Rpackage/tree/main/data). A function *export_ref* supports the export of a smaller BibTeX file based on user selections of EXPOCODES and data streams that they have accessed through the product. This allows references to be easily appended to a bibliography as required.

Reformatting and linking data streams with BIO-MATE R software

The BIO-MATE R software was run to reformat data files to the WHP-Exchange format (https://exchange-format.readthedocs.io/en/latest/index.html), using the original or split data files, processing metadata and citation information as input. The software arranges reformatted WHPE files into four data streams in local directories that include separate WHPE files, for each EXPOCODE, and for underway sensors, profiling sensor casts, pigment measurements, and POC measurements.

Each data stream has its own reformatting function within the BIO-MATE R software (*UWY_to_WHPE, PROF_to_WHPE, PIG_to_WHPE, POC_to_WHPE*). The software requites physical (underway sensor and profiling sensor) data streams to be reformatted before biological (pigment and POC) data streams to accommodate a biological-physical matching algorithm within the PIG_to_WHPE and POC_to_WHPE functions. The algorithm links biological data in the pigment and POC data streams to the physical data in the profiling

sensor and underway sensor data streams. Biological data records are given a profiling sensor identification tag (CTD_ID) if matched to physical data in BIO-MATE.

To match biological data to physical data, the algorithm first uses EXPOCODES to find relevant physical data in profiling sensor data streams. It then matches biological and physical data records by comparing station number (STNBR) and cast number (CASTNO) records. If matches are detected using STNBR and CASTNO, the validity of these matches is checked by comparing time and position information. If position and time were not recorded in biological datasets, it is assumed that the STNNBR and CASTNO records are correct. Otherwise, a match is recorded if both the biological and physical data record data either within 24 hours of each other or within 8 km (¹⁴). After this routine, if unmatched biological data still exist, a database of time and position information from all profiling sensor data relating to the EXPOCODE is created. Matches are found for biological data, if it contains position information, by finding the closest profiling sensor record within 1km in the database. If time information exits, matches are identified as the closest profiling sensor record within 6 hours, otherwise only matching date information is required. Matching has only been inplemented with physical profiling sensor data and not yet to physical underway data.

Quality assurance

Limited quality assurance has been performed on the BIO-MATE data product and is variable across published datasets. The initial integrity of these data records lies with the Principal Investigators of the published data record. As a result, reformatted data have varying levels of quality control and post-processing. We have included cruise report citations in our product to aid in further data quality assurance efforts.

This allows a range of users to benefit from the BIO-MATE aggregate product and ensures data remains to the standard it was published at. The quality assurance required of physical and biological ocean data varies according to application, and is up to the user to confirm the data is suitable for their application. For example, when assessing basin-scale trends, a lower level of quality assurance is required, compared to when validating or training satellite algorithms or ocean models. Future versions of BIO-MATE could implement quality assurance metrics.

Data Records

The four data streams are all stored on the IMAS data portal (https://data.imas.utas.edu.au/portal/search), linked through unique EXPOCODES. Supporting data contains a metadata table and BibTeX citation files. The spatial extent of the data records is confined largely to the Southern Ocean, and was collected from 1985 -2018 (Figure 4). A summary of the data records in the BIO-MATE aggregate data product is presented in Table 2.

Underway sensor data stream

The underway sensor data stream contains a comma delimited WHP-Exchange file for each voyage ([EXPOCODE]_UWY.csv). The format of this file consists of headers to store metadata, followed by a data table that reports records collected by underway sensors mounted on the vessel (Table 5).

Profiling sensor data stream

The profiling sensor data stream contains a comma delimited WHP-Exchange file for each unique profiling cast conducted on each voyage ([EXPOCODE]/*station number*][cast number]_ctd1.csv). The file is formatted to store metadata as headers which is followed by the data table that reports records from profiling sensors mounted on a sampling rosette (Table 3).

Pigment data stream

The pigment data stream contains a comma delimited WHP-Exchange file for each voyage (named [EXPOCODE]*PIG*[SOURCED_FROM]_[METHOD].csv). The format of this file consists of headers to store supporting information, followed by a data table that records measurements from the lab analysis of seawater samples for pigments performed by principle investigators (Table 4).

Particulate Organic Carbon data stream

The POC data stream contains a comma delimited WHP-Exchange file for each voyage (named [EXPOCODE]*POC*[SOURCED_FROM]_[METHOD].csv). The format of this file consists of headers to store supporting information, followed by a data table that records measurements from the lab analysis of seawater samples for particulate organic carbon performed by principle investigators (Table 6).

Supporting data

Supporting data are included in the BIO-MATE aggregate data product to support the correct citation of data and guide user access to data. This data includes 1. a BibTeX file, that contains information to reference all BIO-MATE data records 2. an index table indicating data availability and citation tags against data records listed by EXPOCODE, data stream, method and source, 3. a records table for all data repositories from which BIO-MATE data was sourced from and 4. a records table for all pigment and POC analysis methods used in BIO-MATE data.

Technical Validation

We validated the quality of the BIO-MATE data compilation, by displaying a number of key data distributions and trends. This validation does not confirm the quality of individual data points, in which the authors have placed no additional quality assurance to the published datasets.

The location data associated with the published datasets has been interpreted correctly by the software. This is evident from the success of the biophysical matching algorithm, along with the spatial distribution of the data and recorded sampling depths (Figure 4). The data are predominantly collected in the month of January between 1991-2010. This is consistent with the fact that ship-based sampling in the Southern Ocean is conducted during Austral summer, and displays a lag time in publishing most recent datasets to data repositories. All data are in the ocean, not on land, confirming the absence of spurious location data, and most samples are located in the Southern Ocean which is consistent with our search constraints. Finally information on sampling time of ship-based biological data is as expected, and CTD sampling times (start, bottom and end) are sequential and follow a trend with sampling depth (Figure 7).

The biological ocean data associated with the published datasets has been interpreted correctly by the software. Over-all fluorometrically derived chlorophyll (FCHLORA), HPLC derived chlorophyll a (Chl a) and HPLC derived total chlorophyll (TCHLA) measurements show a log-normal distribution, as expected. High values (>10 3BCg/l) are constrained to the coastal zones as expected (Figure 6). There is a linear relationship between chlorophyll-a derived from HPLC methods and chlorophyll derived from fluorometric methods (Figure 8). This is expected, although considerable variability is expected due to the influence of phaeopigments and other accessory pigments on fluorometrically derived chlorophyll measurements.

Five fluorometric methods to derive chlorophyll have coincident HPLC measurements. Briefly, the ANTXVIII_2 and JGOFS method shows good correlation between the two. The PALMER_LTER method shows considerable variability between methods. This may be due to the coastal location of most samples and the influence of accessory pigments, but further investigation is needed. Finally, only a small number of coincident HPLC measurements were collected alongside fluorometry by Mueller *et al.* (2003) and unknown fluorometric methods (< 11), making it difficult to assess the quality of these methods.

The physical ocean data associated with published datasets has been interpreted correctly by the software. Temperature and salinity ranges fall within expected vales for the ocean, and display expected trends with latitude (Figure 5).

Usage Notes

The community is welcome to contribute to the development of BIO-MATE software and to contribute published data to the aggregation, by following a user guide (Figure 3).

Contributing to BIO-MATE software development

It is recommended that changes to BIO-MATE software be made through Git Hub. Contributors can fork the existing repository (https://github.com/KimBaldry/BIOMATE-Rpackage) and make changes directly to the source code. Once changes are made, they can be directed back to the BIOMATE R package repository and released as an updated version of the BIO-MATE software. If the BIO-MATE source code is to be significantly developed, we suggest that the corresponding author is contacted and a hand-over of the software is negotiated. We encourage the addition of new data streams to BIO-MATE, the expansion of BIO-MATE capabilities, the addition of quality assurances and increases in software efficiency.

Contributing data to BIO-MATE

Users can submit published biological ocean data to BIO-MATE using the R shiny app BIO-SHARE (Figure 3). Once data are submitted they can be downloaded by the user and automatically submitted to the BIO-MATE Git Hub repository for future addition into the product. We ask that all data submitted to BIO-MATE are published elsewhere and that users enter an accurate citation for the data they are submitting.

For large data submissions, users can create their own workflows using the BIO-MATE R package to reformat data and information (Figure 3). Once data have been reformatted, they can be submitted to the corresponding author via Git Hub or direct communication.

Currently, BIO-MATE only supports data files stored in text-delimited formats, with structured headers and columns in a data table, and NetCDF format. The user is required to enter in some metadata to inform the software on input formats.

Recommended use in data analyses

We encourage the use of the data aggregate product as a new integrated database of biological and physical data. Data files from selected voyages can be identified using unique EXPOCODES and CTD_IDs. This makes it easy to use multiple data streams in analysis, by indexing files across these EXPOCODES. Alternatively, the selection tool on the IMAS repository helps users to select voyages using spatial bounds.

Code Availability

All data processing was performed in R software (Version 1.1.423). The BIO-MATE R software is freely available (https://github.com/KimBaldry/BIOMATE-Rpackage). The semi-automated workflow and accompanying processing data used to construct the data product, along with the code used to create the data descriptor is freely accessible via Git Hub (https://github.com/KBaldry/BIO-MATE).

Acknowledgements

This research was supported under Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (Project ID SR140300001) and a 2019 Fellowship from the Scientific Committee of Antarctic Research. It was also partially supported by Geoscience Australia, in the form of paid study leave from employment. Data included in the data product were made available by the following data repositories; PANGAEA, AODN/IMOS, SeaBASS, CCHDO, AADC, GLODAP, PAL-LTER, CSIRO, MDGS and BCO-DMO. Records of data access dates, source addresses and digital object identifiers are recorded as metadata, alongside appropriate data citations. We acknowledge the enormous community effort undertaken in the collection, analysis and publication of this data and thank principle investigators for publishing their data in open access repositories.

Author Contributions

KB designed the data product, performed the data aggregation and wrote the manuscript. RJ contributed to the data product design and manuscript. PGS and PWB contributed to the manuscript.

Competing Interests

The authors of this manuscript declare no conflicts of interest.

Figure 1: The BIO-MATE concept for creating a consistent data compilation from existing ship-based oceanographic data

Figure 2: Typical data collection and treatment process for biological oceanographic data within the BIO-MATE data compilation.

Figure 3: A schematic demonstrating the BIO-MATE workflow and how it is implemented in BIO-SHARE

Figure 4: The spatiotemporal distribution of different data streams and bio-physical matches in the BIOMATE data compilation

Figure 5: The distribution of temperature and salinity data measured at 10m by profiling sensors in the BIOMATE data compilation

Figure 6: The (a) distribution of Chla, TCHLA and FCHLA in the BIO-MATE data compilation and (b) the location of high (>10 μ g/l) Chla, TCHLA and FCHLA measurements.

Figure 7: The time difference between the bottom and end possitions of a profiling sensor cast versus the bottom depth of the cast.

Figure 8: A comparison of fluorometrically derived chlorophyll (Chl) methods against total chlorophyll-a (TChla) derived from HPLC measurments

Tables

Table 1: Description of the processing metadata required to ingest data into BIO-MATE for semi-automated reformatting.

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
File format information			
file_type	all	The format of the file/s.	text delim or netcdf
path	all	A path to where the file/s is stored.	A pathname that is R compatible

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
extention	all	The extension of the file/s.	text delim or netcdf
delim	all	Only fill if rectangular text-delimited file/s.	rect
header_sep	all	A separator used in headers of the file. Headers often store location data in profiling datasets and need extraction. Can be left empty.	colon, comma, dash, equals, space
missing_value	all	The value or character used to indicate a missing value.	value
not_detected	PIG, PO C	The value or character used to indicate a variable was not detected in analysis.	value
Data aquisition information	1		
EXPOCODE	all	The EXPOCODE of the voyage associated with the data.	12-digit code
source	all	The data repository the data files were sourced from.	The short name of the data repository used within BIO-MATE. See https://github.com/KimBaldry/BIO- MATE/product_data/supporting_informa tion/BIOMATE_SOURCES.txt.

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
PI	all	The principle investigator/s responsible for the published dataset.	Names sepparated by a dash
Institution	all	The institution/s who collected the data.	Names sepparated by a dash
contact	all	A contact for the published dataset.	E-mail address
citation	all	The BIO- MATE citation tag/s used to reference a BibTEX entry for the published dataset.	A BIO-MATE citation tag
analysis_type	PIG, PO C	The type of analysis used on water samples for the published dataset.	A code to reference an analysis type. See https://github.com/KimBaldry/BIO- MATE/product_data/supporting_informa tion/BIOMATE_METHODS.txt
Method	PIG, PO C	The method used to analyse water samples for the published dataset.	A code to reference a method. See https://github.com/KimBaldry/BIO- MATE/product_data/supporting_informa tion/BIOMATE_METHODS.txt
Location data information			
TZ	all	The time zone for date and time information.	Time zone code

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
STNNBR	all	The name of the variable for the station number of the profiling staation.	Text. If recorded in header use header- [variable].
CASTNO	all	The name of the variable for the cast number at the profiling station.	Text. If recorded in header use header- [variable].
DATE	PR OF	The name of the variable for the date of the profiling cast.	Text. If recorded in header use header- [variable].
DATE_analyser	PIG, PO C	The name of the variable for date of observation recorded by the analyser.	Text. If recorded in header use header- [variable].
DATE_format	PR OF	Format for DATE.	A format string code. See strptime in R for codes.
DATE_analyser_format	PIG, PO C	Format for DATE_analyse r.	A format string code. See strptime in R for codes.
TIME_s	PR OF	The name of the variable for time at the start of teh profiling cast.	Text. If recorded in header use header- [variable].
TIME_b	PR OF	The name of the variable for time at the bottom of the profiling cast.	Text. If recorded in header use header- [variable].

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
TIME_e	PR OF	The name of the variable for time at the end of the profiling cast.	Text. If recorded in header use header- [variable].
TIME_analyser	PIG, PO C	The name of the variable for time of observation recorded by the analyser. If recorded in header use header- [variable].	Text
TIME_format	PR OF	Format for TIME.	A format string code. See strptime in R for codes.
TIME_b_format	PR OF	Format for TIME_b, if different to TIME_format.	A format string code. See strptime in R for codes.
TIME_analyser_format	PIG, PO C	Format of TIME_analyser	A format string code. See strptime in R for codes.
LATITUDE_s	PR OF	The name of the variable for latitude at the start of the profiling cast.	Text
LATITUDE_b	PR OF	The name of the variable for latitude at the bottom of the profiling cast.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
LATITUDE_e	PR OF	The name of the variable for latitude at the end of the profiling cast.	Text
LONGITUDE_s	PR OF	The name of the variable for longitude at the start of the profiling cast.	Text
LONGITUDE_b	PR OF	The name of the variable for longitude at the bottom of the profiling cast.	Text
LONGITUDE_e	PR OF	The name of the variable for longitude at the end of the profiling cast.	Text
LAT_analyser	Pig, Po C	The name of the variable for latitude recorded by the analyser.	Text
LON_analyser	Pig, Po C	The name of the variable for longitude recorded by the analyser.	Text
POSITION_format	all	The format of latitude and longitude data.	A string describing the format made up of %deg (degrees), %min (minutes), %sec (seconds) and %pos (for N/S/E/W specification)

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
Sample_ID	PIG, PO C	The name of the variable containing sample identification.	Text
BOTTLE	Pig, Po C	The name of the variable containing bottle identifications.	Text
Underway_ID	PIG, PO C	How underway samples are identified within the dataset. Leave blank if there are no underway values within the dataset.	[variable name]-[value] or all
Profiling sensor data inform	mation	I	
CTDPRS	PR OF	The name of the variable for pressure collected by the profiling sensor.	Text
CTDPRS_u	PR OF	The units for pressure collected by the profiling sensor.	Text
CTDTMP	PR OF	The name of the variable for temperature collected by the profiling sensor.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
CTDTMP_u	PR OF	The units for temperature collected by the profiling sensor.	Text
CTDSAL	PR OF	The name of the variable for salinity collected by the profiling sensor.	Text
CTDSAL_u	PR OF	The units for salinity collected by the profiling sensor.	Text
CTDOXY	PR OF	The name of the variable for oxygen collected by the profiling sensor.	Text
CTDOXY_u	PR OF	The units for oxygen collected by the profiling sensor.	Text
CTDFLUOR	PR OF	The name of the variable for fluorescence collected by the profiling sensor.	Text
CTDFLUOR_u	PR OF	The units for fluorescence collected by the profiling sensor.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
CTDBEAMCP	PR OF	The name of the variable for beam attenuation collected by the profiling sensor.	Text
CTDBEAMCP_u	PR OF	The units for beam attenuation collected by the profiling sensor.	Text
CTDBBP700	PR OF	The name of the variable for optical backscatter (700 nm) collected by the profiling sensor.	Text
CTDBBP700_u	PR OF	The units for optical backscatter (700 nm) collected by the profiling sensor.	Text
CTDXMISS	PR OF	The name of the variable for transmittance collected by the profiling sensor.	Text
CTDXMISS_u	PR OF	The units for transmittance collected by the profiling sensor.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
CTDPAR	PR OF	The name of the variable for photosyntheitic ally active radiation collected by the profiling sensor.	Text
CTDPAR_u	PR OF	The units for photosyntheitic ally active radiation collected by the profiling sensor.	Text
CTDNITRATE	PR OF	The name of the variable for oxygen collected by the profiling sensor.	Text
CTDNITRATE_u	PR OF	The units for oxygen collected by the profiling sensor.	Text
Pigment and POC data info	ormatio	on	
DEPTH	PIG, PO C	The name of the variable for depth of observation recorded by the analyser.	Text
PIG_u	PIG	The units for pigment measurements recorded by the analyser.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
FCHLORA	PIG	The name of the variable for fluorometrically derived chlorophyll.	Text
FPHEO	PIG	The name of the variable for fluorometrically derived phaeopigment s.	Text
FPHYTIN	PIG	The name of the variable for fluorometrically derived phaeophytin.	Text
TCHLA	PIG	The name of the variable for HPLC derived total chlorophyll a.	Text
TACC	PIG	The name of the variable for HPLC derived total accessory pigments.	Text
DVChla	PIG	The name of the variable for HPLC derived divinyl chlorophyll a.	Text
Chla	PIG	The name of the variable for HPLC derived chlorophyll a.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
Chla_ide	PIG	The name of the variable for HPLC derived chlorophyllide.	Text
Chla_allom	PIG	The name of the variable for HPLC derived chlorophyll a allomers.	Text
Chla_prime	PIG	The name of the variable for HPLC derived chlorophyll a prime.	Text
Chlb	PIG	The name of the variable for HPLC derived chlorophyll b.	Text
DVChlb	PIG	The name of the variable for HPLC derived divinyl chlorophyll b.	Text
Chlc	PIG	The name of the variable for HPLC derived chlorophyll c.	Text
Chlc1_Chlc2_Mg_3_8_divi nyl_pheoporphyrin_a5	PIG	The name of the variable for HPLC derived chlorophyll c1 + chlorophyll c2 + Mg 3,8 divinyl pheoporphyrin a5.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
Chlc1	PIG	The name of the variable for HPLC derived chlorophyll c1.	Text
Chlc1_like	PIG	The name of the variable for HPLC derived chlorophyll c1- like.	Text
Chlc2	PIG	The name of the variable for HPLC derived chlorophyll c2.	Text
Chlc1_Chlc2	PIG	The name of the variable for HPLC derived chlorophyll c1 + chlorophyll c2.	Text
Chlc3	PIG	The name of the variable for HPLC derived chlorophyll c3.	Text
MgDVP	PIG	The name of the variable for HPLC derived Mg 2,4 divinyl pheoporphyrin a5 monomethyl ester.	Text
19Hex	PIG	The name of the variable for HPLC derived 19'hexanoylox yfucoxanthin.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
19But	PIG	The name of the variable for HPLC derived 19'butanoyloxy fucoxanthin.	Text
Fucox	PIG	The name of the variable for HPLC derived fucoxanthin.	Text
Perid	PIG	The name of the variable for HPLC derived peridinin.	Text
Prasino	PIG	The name of the variable for HPLC derived prasinoxanthin	Text
Allox	PIG	The name of the variable for HPLC derived alloxanthin.	Text
Lutein	PIG	The name of the variable for HPLC derived lutein.	Text
Zeax	PIG	The name of the variable for HPLC derived zeaxanthin.	Text
Zea_Lut	PIG	The name of the variable for HPLC derived zeaxanthin + lutein.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
Violax	PIG	The name of the variable for HPLC derived violaxanthin.	Text
Alpha_car	PIG	The name of the variable for HPLC derived alpha carotene.	Text
Beta_car	PIG	The name of the variable for HPLC derived beta carotene.	Text
Gamma_car	PIG	The name of the variable for HPLC derived gamma carotene.	Text
Epsilon_car	PIG	The name of the variable for HPLC derived epsilon carotene.	Text
Alpha_Beta_car	PIG	The name of the variable for HPLC derived alpha + beta carotene.	Text
Neox	PIG	The name of the variable for HPLC derived neoxanthin.	Text
DD	PIG	The name of the variable for HPLC derived diadinoxanthin.	Text

Processing metadata variable	Dat a stre am/ s	Description	Input Guide
DT	PIG	The name of the variable for HPLC derived diatoxanthin.	Text
Viol_Neox	PIG	The name of the variable for HPLC derived violaxanthin + neoxanthin.	Text
Phaeopigments	PIG	The name of the variable for HPLC derived bulk phaeopigment s.	Text
Phide_a	PIG	The name of the variable for HPLC derived phaeophorbide a.	Text
Phytin_a	PIG	The name of the variable for HPLC derived phaeophytin a.	Text

Table 2: Summary of the pigment data records contained in the first version of BIO-MATE

Statistic	All pigment records	Subsurface profile records (>4 depth samples above 75 m)	Surface records (<10 m)
Number of voyages	174	94	146
Number of records	65,834	38,458	18,025
Unique samples (no replicates)	62,020	36,095	15,916

Statistic	All pigment records	Subsurface profile records (>4 depth samples above 75 m)	Surface records (<10 m)
Unique samples in lat and lon (not depth)	14,981	4,726	10,432
Bio-physical matches	50,048	38,458	12,003
HPLC and fluorometry matches	3,008	1,429	851
Number of HPLC records	27,299	13,667	7,513
Number of Fluorometry records	38,717	24,993	10,520
Matches with CTDFLUOR records	25,787	20,073	5,862
Matches with CTDBBP700 records	2,829	2,460	355
Matches with CTDBEAMCP records	6,980	5,777	917

(#tab:CTD_des)Summary of the profiling sensor data contained within the first version of BIO-MATE

Statistic	V1
Number of voyages	127.00
Number of profiles	11,818.00
Profiles with pressure records (%)	100.00
Profiles with salinity records (%)	99.87
Profiles with temperature records (%)	99.90
Profiles with oxygen records (%)	42.44

Table 3: Information contained in the reformatted profiling sensor files.

Variable	Description

Variable	Description
Header information	
ORIGINAL_CTDFILE/S	The name of the original file/s
CTDFILE_MOD_DATE	The modification date of the file
SOURCED_FROM	The repository where data was originally sourced from
DATASET_CONTACT	Name and email of the listed dataset contact
DOI/s	Doi/s of original files
BIOMATE_CITE_TAGS	The BIOMATE citation tags that are associated with the data, methods and source repository
DATA_CITATION/S	The full citations associted with the data
Header variables	
NUMBER_HEADERS	The number of header variables
EXPOCODE	The EXPOCODE associated with the data
SHIP	The vessel on which the data was collected
STNNBR or EVENTNBR	The station number of the profiling station
CASTNO	The cast number of the profiling station
CTD_IDs	An identifcation for the profiling station
DATE	The date of the profiling station
TIMEZONE	The timezone the data was collected in
CTD_START_TIME	The time at the start of the profiling station
CTD_START_LATITUDE	The latitude at the start of the profiling station
CTD_START_LONGITUDE	The longitude at the start of the profiling station
CTD_BOTTOM_TIME	The time at the bottom of the profiling station
CTD_BOTTOM_LATITUDE	The latitude at the bottom of the profiling station
CTD_BOTTOM_LONGITUDE	The longitude at the bottom of the profiling station
CTD_END_TIME	The time at the end of the profiling station
CTD_END_LATITUDE	The latitude at the end of the profiling station
CTD_END_LONGITUDE	The longitude at the end of the profiling station

Variable	Description
Ocean data variables	
missing_value	The value that corresponds to missing data within the data table
CTDPRS	Pressure
CTDTMP	Temperature
CTDSAL	Salinity
CTDDOXY	Dissolved oxygen
CTDFLUOR	Fluorescence
CTDBEAMCP	Beam attenuation
CTDBBP700	Optical backscatter at 700 nm
CTDXMISS	Transmissometer
CTDPAR	Photosynthetically active radiation
CTDNITRATE	Nitrate

Table 4: Information contained in the reformatted pigment files.

Variable	Description
Header information	
ORIGINAL_CHLFILE/S	The name of the original file/s
CHLFILE_MOD_DATE	The modification date of the file
SOURCED_FROM	The repository where data was originally sourced from
ANALYSIS_METHOD	The analysis method used to obtain data
DATASET_CONTACT	Name and email of the listed dataset contact
DOI/s	Doi/s of original files
BIOMATE_CITE_TAGS	The BIOMATE citation tags that are associated with the data, methods and source repository
DATA_CITATION/S	The full citations associted with the data

Variable	Description
METHOD_CITATION/S	The full citation associated with the method used to analyse the water sample for pigments
Header variables	
NUMBER_HEADERS	The number of header variables
EXPOCODE	The EXPOCODE associated with the data
SHIP	The vessel on which the data was collected
TIMEZONE	The timezone the data was collected in
missing_value	The value that corresponds to missing data within the data table
not_detected	The value that corresponds to data not detected in analysis within the data table
Ocean data variables	
CTD_IDs	An identifcation for a matching profiling station in the profiling sensor stream
DATE	The date of the profiling station
TIME_s	The start time of the profiling station
TIME_b	The bottom time of the profiling start date
TIME_e	The end time of the profiling station
LATITUDE	The start latitude of the profiling station
LONGITUDE	The start longitude of the profiling station
STNNBR	The station number of the profiling station
CASTNO	The cast number of the profiling station
DATE_analyser	The date of sampling as recorded by the analyser
TIME_analyser	The time of samping as recorded by the analyser
LAT_analyser	The latitude at sampling as recorded by the analyser

Variable	Description
LON_analyser	The longitude at sampling as recorded by the analyser
STNNBR_analyser	The station number of the profiling station as recorded by the analyser
CASTNO_analyser	The cast number of the profiling station as recorded by the analyser
Sample_ID	The sample identification as recorded by the analyser
BOTTLE	The rosette bottle number as recorded by the analyser
DEPTH	The depth the sample was taken
FCHLORA	Fluorometrically derived chlorophyll
FPHEO	fluorometrically derived phaeopigments
FPHYTIN	fluorometrically derived phaeophytin
TCHLA	HPLC derived total chlorophyll a
TACC	HPLC derived total accessory pigments
DVChla	HPLC derived divinyl chlorophyll a
Chla	HPLC derived chlorophyll a
Chla_ide	HPLC derived chlorophyllide
Chla_allom	HPLC derived chlorophyll a allomers
Chla_prime	PLC derived chlorophyll a prime
Chlb	HPLC derived chlorophyll b
DVChlb	HPLC derived divinyl chlorophyll b
Chlc	HPLC derived chlorophyll c
Chlc1_Chlc2_Mg_3_8_divinyl_pheoporphyrin_a5	HPLC derived chlorophyll c1 + chlorophyll c2 + Mg 3,8 divinyl pheoporphyrin a5
Chlc1	HPLC derived chlorophyll c1
Chlc1_like	HPLC derived chlorophyll c1-like
Chlc2	HPLC derived chlorophyll c2

Variable	Description
Chlc1_Chlc2	HPLC derived chlorophyll c1 + chlorophyll c2
Chlc3	HPLC derived chlorophyll c3
MgDVP	HPLC derived Mg 2,4 divinyl pheoporphyrin a5 monomethyl ester
19Hex	HPLC derived 19'hexanoyloxyfucoxanthin
19But	HPLC derived 19'butanoyloxyfucoxanthin
Fucox	HPLC derived fucoxanthin
Prasino	HPLC derived alloxanthin
Lutein	HPLC derived lutein
Zeax	HPLC derived zeaxanthin
Zea_Lut	HPLC derived zeaxanthin + lutein
Violax	HPLC derived violaxanthin
Alpha_car	HPLC derived alpha carotene
Beta_car	HPLC derived beta carotene
Gamma_car	HPLC derived gamma carotene
Epsilon_car	HPLC derived epsilon carotene
Alpha_Beta_car	HPLC derived alpha + beta carotene
Neox	HPLC derived neoxanthin
DD	HPLC derived diadinoxanthin
DT	HPLC derived diatoxanthin
Viol_Neox	HPLC derived violaxanthin + neoxanthin
Phaeopigments	HPLC derived bulk phaeopigments
Phide_a	HPLC derived phaeophorbide a
Phytin_a	HPLC derived phaeophytin a

Table 5: Information contained in the reformatted underway sensor files.

Variable	Description

Variable	Description
Header information	-
ORIGINAL_UWYFILE/S	The name of the original file/s
UWYFILE_MOD_DATE	The modification date of the file
SOURCED_FROM	The repository where data was originally sourced from
DATASET_CONTACT	Name and email of the listed dataset contact
DOI/s	Doi/s of original files
BIOMATE_CITE_TAGS	The BIOMATE citation tags that are associated with the data, methods and source repository
DATA_CITATION/S	The full citations associted with the data
Header variables	
NUMBER_HEADERS	The number of header variables
EXPOCODE	The EXPOCODE associated with the data
SHIP	The vessel on which the data was collected
TIMEZONE	The timezone the data was collected in
missing_value	The value that corresponds to missing data within the data table
Ocean data variables	
DATE	Date of sample
TIME	Time of sample
LATITUDE	Latitude of sample position
LONGITUDE	Longitude of sample position
CTDTMP	Temperature
CTDSAL	Salinity
CTDDOXY	Dissolved oxygen
CTDFLUOR	Fluorescence
CTDBEAMCP	Beam attenuation
CTDXMISS	Transmissometer
CTDPAR	Photosynthetically active radiation

Variable

Description

CTDNITRATE Nitrate

Table 6: Information contained in the reformatted POC files.

Variable	Description
Header information	
ORIGINAL_CHLFILE/S	The name of the original file/s
CHLFILE_MOD_DATE	The modification date of the file
SOURCED_FROM	The repository where data was originally sourced from
ANALYSIS_METHOD	The analysis method used to obtain data
DATASET_CONTACT	Name and email of the listed dataset contact
DOI/s	Doi/s of original files
BIOMATE_CITE_TAGS	The BIOMATE citation tags that are associated with the data, methods and source repository
DATA_CITATION/S	The full citations associted with the data
METHOD_CITATION/S	The full citation associated with the method used to analyse the water sample for pigments
Header variables	
NUMBER_HEADERS	The number of header variables
EXPOCODE	The EXPOCODE associated with the data
SHIP	The vessel on which the data was collected
TIMEZONE	The timezone the data was collected in
missing_value	The value that corresponds to missing data within the data table
not_detected	The value that corresponds to data not detected in analysis within the data table
Ocean data variables	
CTD_IDs	An identifcation for a matching profiling station in the profiling sensor stream
DATE	The date of the profiling station
TIME_s	The start time of the profiling station

Variable	Description
TIME_b	The bottom time of the profiling start date
TIME_e	The end time of the profiling station
LATITUDE	The start latitude of the profiling station
LONGITUDE	The start longitude of the profiling station
STNNBR	The station number of the profiling station
CASTNO	The cast number of the profiling station
DATE_analyser	The date of sampling as recorded by the analyser
TIME_analyser	The time of samping as recorded by the analyser
LAT_analyser	The latitude at sampling as recorded by the analyser
LON_analyser	The longitude at sampling as recorded by the analyser
STNNBR_analyser	The station number of the profiling station as recorded by the analyser
CASTNO_analyser	The cast number of the profiling station as recorded by the analyser
Sample_ID	The sample identification as recorded by the analyser
BOTTLE	The rosette bottle number as recorded by the analyser
DEPTH	The depth the sample was taken
POC	Particulate organic carbon

References

1. Raymond W. Schmitt | Emeritus, W. H., Woods Hole Oceanographic Institution. The ocean's role in climate. *Oceanography* **issue_volume**, (2018).

2. Ainley, D. G., Fraser, W. R., Smith, W. O., Hopkins, T. L. & Torres, J. J. The structure of upper level pelagic food webs in the antarctic: Effect of phytoplankton distribution. *Journal of Marine Systems* **2**, 111–122 (1991).

3. Basu, S. & Mackey, K. R. M. Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. *Sustainability* **10**, (2018).

4. Carranza, M. M. *et al.* When mixed layers are not mixed. Storm-driven mixing and bio-optical vertical gradients in mixed layers of the southern ocean. *Journal of Geophysical Research: Oceans* **123**, 7264–7289 (2018).

5. Prairie, J. C., Sutherland, K. R., Nickols, K. J. & Kaltenberg, A. M. Biophysical interactions in the plankton: A cross-scale review. *Limnology and Oceanography: Fluids and Environments* **2**, 121–145 (2012).

6. Wihsgott, J. U. *et al.* Observations of vertical mixing in autumn and its effect on the autumn phytoplankton bloom. *Progress in Oceanography* **177**, 102059 (2019).

7. Brody, S. R. & Lozier, M. S. Characterizing upper-ocean mixing and its effect on the spring phytoplankton bloom with in situ data. *ICES Journal of Marine Science* **72**, 1961–1970 (2015).

8. Mignot, A., D'Ortenzio, F., Taillandier, V., Cossarini, G. & Salon, S. Quantifying observational errors in biogeochemical-argo oxygen, nitrate, and chlorophyll a concentrations. *Geophysical Research Letters* **46**, 4330–4337 (2019).

9. Valente, A. *et al.* A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two. *Earth System Science Data* **11**, 1037–1068 (2019).

10. Johnson, R., Strutton, P. G., Wright, S. W., McMinn, A. & Meiners, K. M. Three improved satellite chlorophyll algorithms for the southern ocean. *Journal of Geophysical Research: Oceans* **118**, 3694–3703 (2013).

11. Sauzède, R. *et al.* Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A first database for the global ocean. *Earth System Science Data* **7**, 261–273 (2015).

12. Roesler, C. *et al.* Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET labs ECO sensors. *Limnology and Oceanography: Methods* **15**, 572–585 (2017).

13. Verdy, A. & Mazloff, M. R. A data assimilating model for estimating southern ocean biogeochemistry. *Journal of Geophysical Research: Oceans* **122**, 6968–6988 (2017).

14. Haëntjens, N., Boss, E. & Talley, L. D. Revisiting ocean color algorithms for chlorophyll a and particulate organic carbon in the southern ocean using biogeochemical floats. *Journal of Geophysical Research: Oceans* **122**, 6583–6593 (2017).