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Abstract
1. Machine learning algorithms have become very popular for spatial mapping of 

the environment due to their ability to fit nonlinear and complex relationships. 
However, this ability comes with the disadvantage that they can only be applied 
to new data if these are similar to the training data. Since spatial mapping requires 
predictions to new geographic space which in many cases goes along with new 
predictor properties, a method to assess the area to which a prediction model can 
be reliably applied is required.

2. Here, we suggest a methodology that delineates the ‘area of applicability’ (AOA) 
that we define as the area where we enabled the model to learn about relation-
ships based on the training data, and where the estimated cross- validation per-
formance holds. We first propose a ‘dissimilarity index’ (DI) that is based on the 
minimum distance to the training data in the multidimensional predictor space, 
with predictors being weighted by their respective importance in the model. 
The AOA is then derived by applying a threshold which is the (outlier- removed) 
maximum DI of the training data derived via cross- validation. We further use the 
relationship between the DI and the cross- validation performance to map the esti-
mated performance of predictions. We illustrate the approach in a simulated case 
study chosen to mimic ecological realities and test the credibility by using a large 
set of simulated data.

3. The simulation studies showed that the prediction error within the AOA is compa-
rable to the cross- validation error of the trained model, while the cross- validation 
error does not apply outside the AOA. This applies to models being trained with 
randomly distributed training data, as well as when training data are clustered 
in space and where spatial cross- validation is applied. Using the relationship be-
tween DI and cross- validation performance showed potential to limit predictions 
to the area where a user- defined performance applies.

4. We suggest to add the AOA computation to the modeller's standard toolkit and to 
present predictions for the AOA only. We further suggest to report a map of DI- 
dependent performance estimates alongside prediction maps and complementary 
to (cross- )validation performance measures and the common uncertainty estimates.
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1  | INTRODUC TION

Spatial mapping is an important task in environmental science to re-
veal spatial (and spatio- temporal) patterns and changes in the envi-
ronment. Predictive modelling is a common method in this context, 
where field data are used to train statistical models using spatially 
continuous predictor variables, for example derived from remote 
sensing imagery. The resulting model is then used to make predic-
tions for the entire area of interest, i.e. beyond the geographic loca-
tions of training data. In the last years, machine learning algorithms 
have become the most popular tool in predictive modelling being 
able to capture nonlinear and complex relationships. In this way, a 
large variety of different environmental variables have been mapped 
even ambitiously on a global scale, such as global tree restoration 
potential (Bastin et al., 2019), soil properties (Hengl et al., 2017), 
distribution of nematodes (van den Hoogen et al., 2019) and soil 
bacteria (Delgado- Baquerizo et al., 2018), global leaf- freezing resis-
tance (Zohner et al., 2020) or plant species Red List status (Pelletier 
et al., 2018) to mention just a few. However, the reliability of machine 
learning- based global prediction maps is increasingly called into 
question, leading to a loss of confidence in these maps (e.g. see com-
ments to the highly discussed paper of Bastin et al., 2019). Improved 
analysis and communication of uncertainties of spatial predictions 
is therefore required. This is important to identify locations where 
predictions are too uncertain to be considered for further action, 
for example in the context of prioritizing conservation assessment 
(Pelletier et al., 2018), reserve design or if predictions are used as 
input for subsequent modelling where propagation of large errors 
should be avoided.

The performances of machine learning models are typically 
communicated via (cross- ) validation estimates where the cross- 
validation strategy should always be designed according to the pur-
pose of the model. In the context of spatial mapping, the relevance 
of accounting for spatial dependencies for reliable performance es-
timation via cross- validation has been recently highlighted by many 
studies (Brenning, 2012; Meyer et al., 2018; Ploton et al., 2020; 
Pohjankukka et al., 2017; Roberts et al., 2017; Schratz et al., 2019; 
Valavi et al., 2018). Spatial (cross- )validation provides a general error 
estimate for the predictions that is less sensitive to spatial depen-
dence than cross- validation based on random partitioning; however, 
we argue that this is not sufficient to communicate the performance 
of prediction maps— typically field samples used as training data for 
predictive mapping are not evenly distributed over study areas and 
often predictions are made for areas that are lacking a support of 
training data. For example, in the global map of soil nematode den-
sities of van den Hoogen et al. (2019), central Africa as well as North 
East Asia are lacking any training data, but predictions are made for 
these areas. By transferring the model beyond the training locations 

(i.e. to new geographic space), it is assumed that the learned rela-
tionships between predictors and responses still hold. However, 
especially in heterogeneous landscapes, the new geographic space 
might differ considerably in its environmental properties from what 
has been observed in the training data. This leads to a question that 
is not addressed by cross- validation so far— what happens if the 
algorithm has never 'seen' such environmental properties? This is 
relevant as most machine learning algorithms can fit very complex 
relationships; however, this ability comes with the disadvantage that 
they can only be applied to new data if these are similar to the train-
ing data. Therefore, gaps in the predictor space where there is no 
support of training data must be considered problematic because 
the algorithm was not enabled to learn about the relationships in 
these environments.

Since spatial mapping requires predictions to new geographic 
space which in many cases goes along with new predictor proper-
ties, we need to measure how dissimilar predictors at new locations 
are from those in the training data. Based on this, a delineation of the 
area to which a prediction model can reliably be applied is required. 
We call this the ‘area of applicability’ (AOA) of a prediction model. 
Similar concepts have been discussed mainly in the field of chemi-
cal modelling (Quantitative Structure- Activity Relationship (QSAR) 
models, see e.g. Mathea et al., 2016, Toplak et al., 2014, Gadaleta 
et al., 2016, where the concept is usually referred to as ‘domain of 
applicability’) and have been addressed in the field of species dis-
tribution modelling (Elith et al., 2010; Mesgaran et al., 2014; Zurell 
et al., 2012) and soil mapping (Zhu et al., 2015). Also, extrapolation 
conditions have been occasionally mapped (Bastin et al., 2019); 
however, these approaches usually consider minima and maxima 
of individual predictors or the regressor variable hull (Montgomery 
et al., 2012), hence do neither account for gaps in the predictor 
space, nor for unobserved combinations of predictors. Overall, ap-
plications in the field of spatial predictive modelling are rare. Instead, 
models are often assumed to be applicable to the entire area of in-
terest (e.g. globally). An exception in many global prediction maps is 
that Antarctica is often masked from the predictions (e.g. van den 
Hoogen et al., 2019) probably because, by expert knowledge, the 
models can clearly not be applied to this new environment. However, 
other environments might have to be considered equally unsuitable 
for model application. This can be very obvious (e.g. high mountain 
ranges using a model trained in lowlands) but also hard to assess by 
expert knowledge when areas feature combinations of environmen-
tal variables that are not covered by training data.

This aspect is not addressed by common approaches of uncer-
tainty estimation in machine learning, which are usually based on 
the variance of predictions made by ensembles of models (e.g. Bastin 
et al., 2019; Coulston et al., 2016; van den Hoogen et al., 2019, in 
the field of spatial mapping). Such a measure is very obvious for 
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ensemble- based algorithms like Random Forests, where each tree is 
regarded as a model of an ensemble, and the variation in predictions 
among individual trees is used to quantify uncertainty (e.g. standard 
deviations of individual predictions or prediction intervals). Missing 
knowledge about environments is also not addressed by the quantile 
regression forests (Meinshausen, 2006) that are occasionally sug-
gested in the context of spatial mapping (Hengl et al., 2018; Vaysse 
& Lagacherie, 2017) to derive prediction intervals based on the 
conditional distribution of the response variable. Figure 1 shows an 
uncertainty estimation for a linear regression model and a Random 
Forest model. Clearly, both provide intervals that only make sense 
in the context of the respective models being valid, but it shows 
that Random Forest prediction intervals estimated from variability 
of predictions of the ensemble do not acknowledge that prediction 
gets harder when one moves further away from the training data, 
outside the data range or into significant gaps. While these uncer-
tainty estimates give valuable information on the variance in predic-
tions and hence on locations where predictions are robust within the 
model, these approaches give no information about ‘unknown en-
vironments’ because dissimilarities in the predictor space between 
training and new data are not considered.

A way to measure how dissimilar predictors at new locations are 
from those in the training data is hence required. One option is to 
look at distances in the (multidimensional) predictor space between 
training data and a new data point (e.g. Sheridan et al., 2004). Here, 
we suggest calculating distances to the nearest training data point (in 
the predictor space) which allows accounting for values outside the 
range or hull of predictors, as well as significant gaps in the predictor 
space, something that cannot be accounted for by methods like hulls 
(Montgomery et al., 2012; Netzeva et al., 2005) or average distances. 
Using raw predictor space distances, however, may be problematic 
because in a machine learning model, typically certain variables have 
a high importance while others may be completely irrelevant (i.e. 
they differ in the degree to which they drive the prediction patterns). 
To handle this, Janet et al. (2019) suggest to use the distance in the 
latent predictor space of a neural network. However, this approach 

is specific to neural networks and not generically applicable to, for 
example, Random Forests. Instead, we suggest weighting predictors 
according to their relevance in the model. Using the minimum dis-
tance to training data in the weighted predictor space, normalized by 
average distances between training data, such a dissimilarity index 
(DI) allows mapping the dissimilarity of predictor variables to the val-
ues in the training data in a continuous way.

To identify areas that are too different from the training data to 
be considered reliable for predictions, hence to derive the AOA, a 
threshold on the DI is required. We suggest deriving this threshold 
from the training data by identifying the (outlier- removed) maximum 
dissimilarity of the training data via cross- validation. As a conse-
quence, the AOA is not only the area where we enabled the model 
to learn about relationships based on the training data, but also the 
area to which, on average, the performance measure estimated by 
cross- validation of the model applies. Just like for tuning and per-
formance assessment, deriving the threshold from cross- validation 
means that this threshold is sensitive to the cross- validation strategy 
being used. The cross- validation strategy should always be designed 
according to the purpose of the model. Not considering this and 
choosing for instance randomly assigned folds for cross- validation 
with geographically clustered training data might lead to optimistic 
model performance estimates (e.g. Ploton et al., 2020) and to a very 
small AOA since the performance measure as well as the threshold 
is derived from training data with very strong similarities. Choosing 
the cross- validation strategy according to the purpose of the model 
is hence essential.

However, since the assessment of when a prediction is reliable 
or not depends on its purpose, and hence on the targeted user's re-
quirements, it is hard to argue for a one- fits- all AOA. As we define 
the AOA as the area for which a certain cross- validation performance 
measure holds, and since different cross- validation strategies lead to 
different performance measures with different AOAs, we propose to 
use this and establish a relationship between DI and performance by 
adapting the cross- validation strategy. By creating cross- validation 
folds using a clustering of observations in predictor space, and by 

F I G U R E  1   Problem of predicting beyond the training data and behaviour of prediction intervals for different models. Left: linear 
regression prediction interval width increases with distance from the centre of the training data, right: a more complex relationship fitted 
with Random Forest. Prediction beyond the training data becomes highly unreliable, although prediction interval width outside the data 
range is constant. Random Forest prediction intervals were obtained by computing quantiles over the predictions from individual trees
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decreasing the number of clusters in a stepwise manner, we create 
multipurpose cross- validation scenarios with increasing dissimilari-
ties (between folds), corresponding to lower performance estimates 
and larger AOAs, of course up to a point where the training data no 
longer contain the targeted dissimilarities.

2  | MATERIAL S AND METHODS

We suggest a method that provides a unitless measure for express-
ing how different a new data point is from the training data. We call 
this the ‘dissimilarity index’ (DI), and suggest a threshold for it to 
define the ‘area of applicability’ (AOA) of a prediction model. The 
method requires two datasets that are part of any supervised pre-
dictive modelling task. The first dataset is the training set that in-
cludes the sampling locations that are intended as training data used 
for model training. The second dataset contains the new locations 
for which predictions should be made. In the case of spatial mapping, 
this is the set of spatially continuous data, usually raster data with 
predictor variable values that are known for the entire area of inter-
est. For a visual explanation of the methodology, please also see the 
Supporting Information of this paper.

2.1 | Standardization of predictor variables

To ensure that all variables are treated equally, the predictor vari-
ables are scaled by dividing mean- centred values by their respective 
standard deviations,

where Xs
i,j
 refers to the scaled value of the jth predictor variable corre-

sponding to the ith observation, X
⋅,j to the mean and �j to the standard 

deviation of the jth predictor variable, and mean and standard devia-
tion are computed over the training data. If categorical predictor vari-
ables are used, dummy variables are created prior to standardization.

2.2 | Weighting of variables

If distances were calculated based on the standardized predictors, all 
variables would be treated equally important. However, distances are 
not equally relevant within the predictor space but some variables are 
more important than others in the machine learning model and hence 
are mainly responsible for prediction patterns. Most machine learn-
ing models provide an estimate of relative variable importance (see 
e.g. overview in Kuhn, 2008). To reflect the variable importance in the 
computation of distances in the predictor variable space, we multiply 
the scaled variables with the non- standardized importance estimate wj 
for each variable j before distance calculation takes place, by

As a consequence, distances in the predictor space in the direction of 
the more important variables have a higher effect on our dissimilarity 
measure.

2.3 | Multivariate distance calculation

The Euclidean distance between two arbitrary points a and b in the 
predictor variable space is calculated as

For a new prediction location k, the distance to the nearest training 
data point i

is used to calculate the DI.

2.4 | Dissimilarity index

To allow for interpretation and comparison between models, we 
standardize distances in predictor space for new prediction loca-
tions k by dividing the minimum distance to the nearest training data 
point dk (Figure 2b) by the average of the distances in the training 
data d (Figure 2a), and call this the dissimilarity index DIk, defined as

with d the average of all pairwise distances between the n training data.
Using the standardized weighted distances, the DI can take 

values ranging from 0 to ∞. If the result is 0, the new data point 
is identical in its predictor properties to a training data point. With 
increasing values of the DI, the distance to the nearest training data 
point increases. If the values are greater than 1, the difference to the 
nearest training data point is larger than the average dissimilarity (i.e. 
average distance) between all training data pairs.

2.5 | Deriving the area of applicability

To derive the AOA, a threshold on the DI is required. With regard 
to the definition of the AOA, we derive the threshold from the DI 
values of the training data, with the DI calculated based on data 
points that do not occur in the same cross- validation fold. Taking 
the cross- validation folds into account is required because cross- 
validation is based on repeatedly leaving training data out, hence we 
assume the estimated model performance applies to areas with DI 
values comparable to those found during cross- validating the train-
ing data. Therefore, we calculate the DI for each training data point 
as described in Section 2.4; however, in line with the cross- validation 
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strategy being used, distance is measured to the nearest training data 
point (in the predictor space) that is not in the same cross- validation 
fold (Figure 2b). For example, if a threefold random cross- validation 
is applied for model validation, data are randomly split into three 
folds and the cross- validation error is the average over the predic-
tion errors for each of the folds held back for validation. Hence, the 
predictions for a respective fold are based on a model being trained 
on the remaining data. In line with that, the DI for each training data 
point is calculated by using the distance to the nearest training data 
point that is not in the same fold. The outlier- removed maximum DI 
of the training data is the one used as threshold for the AOA (boxplot 
in Figure 2b) where outliers are defined as values greater than the 
upper whisker (i.e. larger than the 75- percentile plus 1.5 times the 
IQR of the DI values of the cross- validated training data).

For each new data point, the DI is calculated as described in 
Section 2.4 (Figure 2c). Applying the threshold described above to 
every position in the area delineates the AOA.

2.6 | Using DI to quantitatively express prediction 
uncertainty

The AOA is a binary information about the area that features pre-
dictor properties where we enabled the model to learn about re-
lationships, hence it is the area to which the model can be applied 
with an expected average performance that is comparable to the 
cross- validation estimate. However, since the assessment of when 
a prediction is reliable or not depends on its purpose, and hence on 
the targeted user's requirements, it is hard to argue for a one- fits- all 
AOA. It would therefore be desirable to have a quantitative measure 

of uncertainty, for example to limit predictions to an area where a 
required performance value applies (Petchey et al., 2015). This is es-
pecially of relevance as the AOA depends on the cross- validation 
strategy being used. While there should be agreement that the 
cross- validation strategy should be designed according to the pur-
pose of the model (e.g. spatial predictions far beyond clustered train-
ing samples call for a spatial cross- validation, see Ploton et al., 2020), 
the actual interests of different users of predictions may vary (e.g. 
interest in specific locations only, or in predictions made in close dis-
tance to training data or in the area where predictions can be made 
with a required performance).

To solve this, we propose a quantitative uncertainty measure 
derived from the relationship between the DI and cross- validation 
performance. Therefore, we use the DI as well as predictions from 
each cross- validated data point from the training dataset and use a 
sliding window along DI values to assess performance metrics (e.g. 
RMSE, Kappa). We suggest to use these data to fit a suitable para-
metric model that can be used to translate DI values into expected 
prediction performances.

Since different cross- validation strategies lead to different per-
formance measures with different AOAs, we propose to use this and 
establish the relationship between DI and performance by adapting 
the cross- validation strategy. By repeatedly creating cross- validation 
folds using a clustering of observations in predictor space, and by 
decreasing the number of clusters in a stepwise manner, we create 
cross- validation scenarios with increasing dissimilarities (between 
folds), corresponding to less reliable predictions and larger AOAs 
(see Supporting Information in the Appendix). We then compile 
the DIs and predictions from these multiple cross- validation sce-
narios to establish the relationship between DI values and model 

F I G U R E  2   Training samples in a multidimensional (here two- dimensional) predictor space that has been scaled and weighted. First, the 
average of the mean distances between all training data is calculated (a). Next, the dissimilarity index (DI) of the training data is calculated. 
For each training data point (shown here for one example), the distance to the nearest training data point not located in the same cross- 
validation fold is calculated (here visualized assuming a threefold cross- validation; b). This distance is divided by the average of the mean 
distances between all training data (a) to derive the DI. The DI is calculated for each training data point (boxplot in b) and the threshold for 
the area of applicability (AOA) is then derived from the upper whisker of the DI values. For a new data point, the DI is calculated accordingly 
(c). In this example, the DI is larger than the DI threshold, indicating that this new data point falls outside the AOA
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performances. Compared to a single cross- validation, this allows that 
the relationship between DI and prediction performance can be as-
sessed across potential purposes, ranging from predicting on nearly 
identical environments, up to clear extrapolation cases.

2.7 | Simulation studies to test the methodology

To test the suitability of the presented methodology to derive the 
AOA, we simulated nearly 1,000 prediction tasks where the true val-
ues were known. As prediction tasks, we used a spatially continuous 
response variable of Europe that is simulated based on bioclimatic 
predictor variables (www.world clim.org/bioclim) and the simulation 
approach of Leroy et al. (2016). This approach was developed as an 
example of virtual species suitability but will be used here as an ar-
bitrary response variable based on environmental predictors. The 
application of an area- wide simulated response variable is important 
here, as it allows to compare the predictions with true values, and to 
assess the benefit of the AOA.

As predictor variables, we used the WorldClim dataset (Hijmans 
et al., 2005) and chose the 19 bioclimatic variables in 10- min spa-
tial resolution. The response variable was generated by a principal 
component analysis (PCA) of a subset of the bioclimatic variables. 
The variables used to simulate the response were the mean diurnal 
range (‘bio2’), maximum temperature of the warmest month (‘bio5’), 
mean temperature of the warmest quarter (‘bio10’), precipitation 
of the wettest month (‘bio13’), precipitation of the driest month 
(‘bio14’) and precipitation of the coldest quarter (‘bio19’). For the 
PCA, the response to each of the first two principal components 
(axes) is defined and combined to create the final response variable. 
Therefore, the response to the two first axes of the PCA is deter-
mined with Gaussian functions as described in Leroy et al. (2016). 
The means of the Gaussian response functions to the axes of the 
PCA were varied here between 1 and 3 (first axis) and −1 and 1 (sec-
ond axis), and the standard deviations were varied between 1 and 3 
for both axes, resulting in 81 different response variables.

The simulated response variables are available in a spatially contin-
uous way; however, to simulate typical prediction tasks, we simulated 
field sampling locations. We selected sample point locations randomly 
from the target area with varying sample sizes (n = 25, 50, 75, 100). 
Each combination of response variable and sample size was tested 
with three independent replicates of the random sampling design, re-
sulting in a total of 81 × 4 × 3 = 972 different simulated ‘realities’.

We used Random Forests (Breiman, 2001) as machine learning 
algorithm because it is one of the most frequently used algorithms 
in the context of environmental mapping (e.g. used in the context 
of global mapping in Bastin et al., 2019; Hengl et al., 2017; van den 
Hoogen et al., 2019). To prepare model training, the 19 predictors 
and the response variables were extracted for the locations of the 
sampling data points. For model training, the Random Forest im-
plementation of Liaw and Wiener (2002) was used and accessed 
via the caret package (Kuhn, 2019) in R (R Core Team, 2020). Each 
forest consisted of 500 trees and the number of randomly selected 

variables at each split (mtry) was tuned between 2 and 19 (the num-
ber of predictor variables). The minimal size of terminal nodes was 5. 
Tuning and performance estimation was done using random 10- fold 
cross- validation. The trained models were applied to the complete 
set of predictor variables to make spatial predictions over the en-
tire area (81,796 valid pixels). To assess the relative variable impor-
tance required for the estimation of the DI, the approach of Liaw and 
Wiener (2002) was used to estimate wj. Importance is indicated as 
the increase in the mean squared error when a variable is randomly 
permuted. Hence, the higher the decrease, the higher the impor-
tance in the model.

From the catalogue of simulations, we computed prediction 
errors by subtracting predicted from true values, for all prediction 
locations. Using the derived threshold for the AOA, we compared 
the root mean square prediction error (RMSPE) which reflects the 
differences between predicted and true values with the root mean 
square error (RMSE) which represents the cross- validation error of 
the model. We tested whether the RMSPE and RMSE correspond, 
on average, over the set of simulations.

To derive a quantitative performance measure from the DI, we 
retrained each model using 10 different cross- validations designed 
to test the ability of the model for interpolation as well as extrapo-
lation. Therefore, we defined the cross- validation folds by k- means 
clustering in the predictor space with 10 different cluster numbers 
ranging from 3 to N, where N is the number of training data points (i.e. 
leave- one- out cross- validation). We then analysed the relationship 
between all cross- validated predictions and their DIs by calculating 
the RMSE for a sliding window of DI values (window size = 10). The 
relationship was used to calibrate the DI, hence to derive quantita-
tive performance estimates. We used a shape- constrained additive 
model (Pya, 2020; Pya & Wood, 2015) with a monotone increasing 
constraint to model the relationship.

2.7.1 | Case study

To motivate our proposal, we show the application of the approach 
in an illustrated case study using a single simulation from the sce-
narios described above. Therefore, we used a single setting from the 
972 simulations where the response was developed from the biocli-
matic predictors (presented in Figure 3a) with means of the Gaussian 
response functions of 3 (first axis) and −1 (second axis) and standard 
deviations of 2 for both axes. The simulated response had values 
between 0 and 1 with a mean of 0.31 (Figure 3b). As training data, 
we randomly selected 50 sample point locations from the target 
area (red markers in Figure 3b). To further illustrate the suitability 
of the presented methodology across sampling designs (and hence 
across suitable cross- validation strategies), as a second example, we 
simulated a spatially clustered sampling design— instead of 50 ran-
domly selected sampling locations as described before, we simulated 
10 sampling points clustered around each of the 50 locations, re-
sulting in 500 training points across the 50 independent locations 
(Figure  7a).

http://www.worldclim.org/bioclim
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Model performance estimation was done using a random 10- 
fold cross- validation for the randomly distributed training data and 
a leave- cluster- out spatial cross- validation for the clustered training 
data. DI and AOA were derived as explained above. To arrive at a 
quantitative uncertainty estimate, the relationship between RMSE 
and DI was estimated using the data from a single cross- validation 
as well as from multipurpose cross- validation as described in 
Section 2.7.

To highlight the advantage of the newly developed methodol-
ogy, we further compared the DI to the commonly applied standard 
deviation of the Random Forest ensemble. Therefore, the standard 
deviations of the individual predictions made by the 500 trees were 
calculated for a respective pixel.

3  | RESULTS

Using the 972 scenarios, Figure  4a shows that the prediction error 
within the AOA is in high agreement with the estimated cross- 
validation error of the model. The model error was not valid outside 
the AOA, indicated by considerably higher RMSE values for the pre-
diction compared to the cross- validation error (Figure 4b).

As described above, for each scenario, the DI values on a pixel 
level were calibrated using the respective relationship between the 
cross- validated prediction errors (i.e. RMSE) and the DI in a sliding 
window. Using this relationship, the estimated RMSE of predictions 
within the AOA could reflect the true prediction error with an aver-
age R2 of 0.21 across the model scenarios.

3.1 | Case study

The case study model had a high ability to predict the response vari-
able, indicated by a random cross- validation R2 of 0.95 and a RMSE 

of 0.08 for the prediction task using randomly distributed data. The 
importance of the different predictor variables ranged from 1.5 to 
12 (Figure 5) which represented the baseline for variable weighting 
used to estimate the DI.

The DI (Figure 6e) shows clear spatial patterns across Europe. 
Values range from 0 to 2.89 with an average of 0.25. Noticeable 
are high values (low applicability) in the Alps and at the west coast 
of Norway. This means that these areas feature very distinct envi-
ronments compared to the environments covered by the training 
data. The standard deviations of the Random Forest predictions 
feature very different spatial patterns (Figure 6c) that are not in 
agreement with the true absolute prediction error (Figure 6d). In 
contrast, the DI (Figure 6e) reflects the spatial patterns in the true 
error (Figure 6d), with a correlation coefficient of r = 0.71. If vari-
ables were not weighted according to their relevance in the model 
(Figure 5), the DI was found to be less in accordance with the true 
absolute error (r = 0.62).

The threshold for the AOA as derived from the DI of the 
cross- validated training data was 0.64. Figure 6f shows the pre-
dictions made by the model (Figure 6b) but masked by the AOA. 
The average agreement between the reference and the prediction 
was higher within the AOA (r = 0.97, RMSE = 0.07) compared to 
the entire study area (r = 0.93, RMSE = 0.10). Outside the AOA, 
the agreement was considerably lower (r < 0.00, RMSE = 0.44). 
Note that the prediction error within the AOA was in high 
agreement with the random cross- validation error of the model 
(RMSE = 0.08).

Using the scenario of spatially clustered data points for model 
training (Figure 7a), the random cross- validation RMSE was 0.019. 
When testing the ability of the model to make predictions beyond 
clusters, hence when validated with a leave- cluster- out spatial 
cross- validation, the RMSE increased to 0.036. Using the thresh-
old on the DI estimated by taking into account distances to data 
points not located in the same spatial cluster, the AOA for which the 

F I G U R E  3   Bioclimatic variables used to simulate the response variable for the case study. The variables are stretched here between 0 
and 1 for visualization purposes (a). (b) Simulated response variable for the case study and the location of the 50 randomly selected sampling 
points (red markers) used as training data
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spatial cross- validation applies (Figure 7b) was considerably larger 
compared to the AOA for which the random cross- validation error 
applies (Figure 7c). The true prediction RMSE within the AOA was 
in both cases comparable to the respective cross- validation RMSE— 
0.046 for the AOA of the spatial model and 0.022 for the AOA of the 
random model.

Obviously, the AOA depends on the cross- validation strategy that 
was agreed on according to the intended purpose of the model. Using 
the relationship between the DI and the performance allows limiting 
the AOA to a user- defined performance threshold. The results showed 
a strong relationship between the DI and the RMSE within the AOA, 
modelled with the shape- constrained additive model (R2 = 0.82). 
Figure 8a shows this for the case study using the clustered design and 

where a spatial cross- validation was applied. The RMSE was low for 
data points with a small DI and increased with increasing DI values 
up to the AOA threshold at DI = 0.50. The true relationship between 
the RMSE and the DI (red points in Figure 8) was generally compara-
ble to the relationship estimated based on the cross- validation. Using 
multiple cross- validation strategies allowed for a larger AOA (up to a 
DI of 0.79) and hence for a more comprehensive assessment of the 
DI- dependent RMSE (Figure 8b; R2 = 0.83). Using the model allowed 
mapping the estimated performance on a pixel level as a baseline to 
limit predictions to areas where user- defined performance applies— of 
course only within the maximum possible AOA (Figure 9).

4  | DISCUSSION

We propose a method to estimate the AOA of predictive models, by 
which we mean the area where we enabled models to learn about 
relationships and where, as a consequence, predictions are expected 
to have an average error that is comparable to the model error esti-
mated using cross- validation.

The AOA is derived by thresholding the DI, a standardized dis-
tance in the multidimensional predictor space, using the outlier- 
removed maximum DI of the training data encountered during 
cross- validation. A new data point is outside the AOA when its DI 
exceeds this threshold. Based on a catalogue of 972 simulations, we 
found that prediction errors within the AOA are on average similar 
to the cross- validation error. The cross- validation error of the model 
should not be considered valid outside the AOA because the DI 
(i.e. dissimilarity) is greater than the DI values encountered during 
cross- validation.

Knowledge on the AOA is relevant when predictions are made 
for heterogeneous areas but based on limited field data, or are made 
across study areas where it is unclear whether the model can be ap-
plied to the new environment. Yates et al. (2018) raised the need for 
assessing the transferability of prediction models as an ‘outstanding 

F I G U R E  5   Importance of the predictor variables within the 
Random Forest model based on the 50 randomly distributed 
sample data. Importance is indicated as the increase in the mean 
squared error when a variable is randomly permuted

F I G U R E  4   RMSE of the model (cross- validation, y- axis) against RMSPE (of true prediction errors outside training data, x- axis) for the 
972 simulations, inside the area of applicability (AOA; left) and outside the AOA (right); inside the AOA both errors correspond on average, 
outside this area the RMSPE is much larger. The red dot shows the results for the case study scenario
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challenge’. The methodology to estimate the AOA as presented here 
provides one suggestion to assess the transferability by quantifying 
the differences in the environmental conditions between training 
data and target area and identifying the area for which the model 
can be expected to make predictions with an error comparable to the 
communicated model performance. Limiting predictions to the AOA 
is especially relevant when predictions, along with cross- validation- 
based error estimates, are used as a baseline for decision- making 
(e.g. in the context of nature conservation). It is further of high rel-
evance when a prediction map is used for subsequent modelling to 
limit the propagation of massive errors. The frequently used global 
soil maps of Hengl et al. (2017), for example, represent a basis for 
many subsequent environmental prediction models (e.g. for mapping 
soil organisms in van den Delgado- Baquerizo et al., 2018; Hoogen 

et al., 2019). The presented approach would allow assessing the spa-
tial suitability of these products, and allow for constraining further 
application to the estimated AOA or to the area where a required 
performance applies within the AOA.

The AOA adds an important information to the validation metrics 
based on test data taken from a biased sample or via cross- validation. 
First, the model validation usually provides a global estimate that does 
not allow for representing the varying performance of the model in a 
spatial way. Second, (cross- )validation estimates are based on the sam-
ple data only, but spatial sampling is usually biased (e.g. Bystriakova 
et al., 2012; Kadmon et al., 2004) and is unlikely to cover the entire 
environmental conditions of heterogeneous environments even when 
a sampling design is planned with the aim to cover the range of the 
predictor space (Hengl et al., 2003). Subsequently the validation that 

F I G U R E  6   Comparison between reference (a), prediction (b), standard deviation of predictions (c), the true absolute prediction error (d), 
the newly suggested dissimilarity index (e) and the predictions masked by the derived area of applicability, where the areas outside the area 
of applicability are shown in pink (f)

F I G U R E  7   Example of an extremely clustered sampling design and the consequences for the estimation of the area of applicability: the 
dissimilarity index overlaid by 500 training data points clustered around 50 locations (a), predictions for the derived area of applicability for 
which the spatial cross- validation error applies (b), as well as predictions for the area of applicability for which the (lower, but in this case 
inappropriate) random cross- validation error applies (c). Areas outside the area of applicability are shown in pink
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is based on independent subsets of the samples will be biased as well. 
One might argue that this is rather a problem of sampling strategies 
that need to be improved in the first place rather than addressing 
this issue by mapping the AOA of the model. However, the idea of 
machine learning for spatial mapping is that we are able to deal with 
complex relationships and a large variety of potential predictor vari-
ables. This challenges sampling by expert knowledge because gaps in 

the predictor space are hard to identify in high- dimensional predictor 
spaces. Also, in many prediction tasks, data from large composite da-
tabases are used that lack a common or shared sampling design, or for 
which the sampling design is unknown.

The uncertainty originating from missing knowledge about envi-
ronments is also not reflected by standard deviations of predictions 
made by individual predictions of an ensemble. They give valuable 

F I G U R E  9   Spatial patterns of the estimated RMSE based on the relationship between dissimilarity index (Figure 7a) and RMSE from 
single or multiple cross- validations as shown in Figure 8. Areas outside the area of applicability are shown in pink

F I G U R E  8   Relationship between RMSE and dissimilarity index (DI), computed up to DI threshold values, based on the case study 
scenario using the 500 spatially clustered training data and single spatial cross- validation (a) as well as the results for 10 different cross- 
validations, each using different clustering in predictor space (b). Each data point corresponds to the RMSE calculated in a sliding window of 
size 10 along the DI axis. The fitted model that is used to estimate model performance based on the DI is shown in blue (see also Figure 9). 
The true RMSE which was calculated using the reference map and corresponding predictions within the identical windows of DI values is 
shown in red
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insights into the model by indicating areas where the model is very 
sensitive to changes in the data or randomness, hence may also 
reflect low training data point densities, but do not provide infor-
mation on the AOA (see again Figure 1b). The results showed that 
it is required to account for incomplete coverage of environmental 
properties and to limit predictions to areas that are similar in their 
predictor properties compared to the training data and are therefore 
within the AOA.

As it is derived from distances in predictor space encountered 
during cross- validation, the AOA depends on distances considered 
as a result of the folding strategy followed during cross- validation. 
The distances are strongly influenced by the spatial pattern of 
sampling. In cases where training data are spatially clustered (e.g. 
when pixels are obtained from training polygons for land cover 
classifications, see Meyer et al., 2019), a naive strategy using ran-
dom cross- validation folds effectively evaluates how well values in 
a cluster can be predicted based on other observations from the 
same cluster, and performance measures obtained this way do not 
reflect prediction beyond the cluster (e.g. Meyer et al., 2018, 2019; 
Pohjankukka et al., 2017; Roberts et al., 2017; Schratz et al., 2019; 
Valavi et al., 2018). In such cases, the AOA reflects this and renders 
the model ‘not applicable’ to most of the target area (Figure 7c). 
Alternative cross- validation strategies, for example using spa-
tial blocks for folding, result in larger model error estimates 
corresponding to a much larger AOA (Figure 7b). Choosing the 
cross- validation strategy can be a tool to arrive at an AOA that cor-
responds to a user- specified average prediction error. If folds are 
chosen in such a way that the distances considered are larger, for 
example by choosing spatial blocks (Figure 8a) or by defining folds 
based on clustering points in prediction space for a varying number 
of clusters (Figure 8b), we find a relationship between DI and model 
error. This can be used to choose a DI threshold for the AOA such 
that a user- specified error level is attained. This approach is limited 
to the range of DI values with sufficient replicates in the training 
data (maximum AOA).

The application of simulated response variables was required 
to validate the proposed methodology. Note that the simulations 
applied here lead to very strong prediction models where the sim-
ulated response is a clear function of the predictors. Therefore, 
prediction errors can, to a large degree, be traced back to missing 
coverage in the environmental predictors. The relationship be-
tween the DI and a true error will be less strong for weak pre-
diction tasks because missing knowledge of the environment will 
not be the major source of uncertainty. Other factors, especially 
a poor ability of the predictors to model the response, also influ-
ence uncertainty. This is not considered in the DI calculation, but 
reflected by the (cross- )validation error. Also note that high differ-
ences between training data and new data do not necessarily lead 
to a high prediction error. Instead, locations with a high DI, falling 
outside the AOA, are associated with a high uncertainty because 
the environment, and hence the prediction success, is unknown 
(see also the Supporting Information in the Appendix). Similarly, 
the method provides no guarantee that predictions within the AOA 

are reliable. Other factors that have not been considered as pre-
dictors might influence the response in certain environments. If 
these have not been considered in the model, they are likewise 
not considered in its AOA. Further, certain environments within 
the AOA might not be sufficiently covered in the training data to 
derive reliable predictions, which additionally requires additional 
uncertainty measures, for example standard deviations of predic-
tions in an ensemble. Therefore, we see the AOA as a precondition 
for reliable predictions, but it should in no way be regarded as a 
guarantee for this.

The DI and the derived AOA do not only provide relevant in-
formation for estimating the reliability of predictions but can also 
serve model improvement. The uncertainty originating from missing 
knowledge of the model represents a reducible part of the total pre-
diction uncertainties, because it is based on the training data avail-
ability. Knowledge of the AOA allows to improve the model quality 
by targeting subsequent sampling effort to improve the data basis. 
Therefore, the suggested DI can be used to identify the environ-
ments that are not covered by training data and hence can be used 
as a baseline for further sampling campaigns with the aim to increase 
the AOA of a model. Since the estimation of the AOA requires the 
predictive model for variable weighting only, the effect of new sam-
ples on the AOA can be assessed without high computation times. 
It can also be an option that variable weighting is done by expert 
elicitation prior to a modelling procedure so that the approach can 
be deployed in the early stages of a research project starting with 
the selection of sampling locations.

The method to estimate the AOA as presented here should be 
considered a first attempt and contains a number of aspects that are 
up for discussion. These include:

1. The use of distances in a weighted predictor space; weighting 
effectively alleviates the curse of dimensionality, but lacks a 
formal statistical argument,

2. The estimation of variable importance used for weighting; there 
are different strategies that will lead to different results in the es-
timation of the AOA. This is a very general issue in machine learn-
ing applications that goes beyond the scope of this paper. Here, 
we recommend that users of the AOA should use the method 
that is regarded as the most accurate for the respective algorithm 
being used,

3. The use of Euclidean distance; monotone transformation (e.g. log 
or power transforms) of predictors would not affect a Random 
Forest model fit or prediction, but would strongly affect the AOA,

4. The use of the nearest training data point dk; this does not discrim-
inate between cases where one isolated, remote training point is 
nearest, or a predictor space location is surrounded by training 
points at this same distance; as an alternative, distances to multi-
ple points (k- NN) could be used (e.g. Sahigara et al., 2013, in the 
context of chemical modelling), or local training data point den-
sities (e.g. Aniceto et al., 2016). Though the uncertainty caused 
by data point density is already reflected in ensemble- based pre-
diction intervals (see Figure 1b), which should also be presented 
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alongside predictions, it remains to be tested if considering data 
point densities can be included in the delineation of the AOA,

5. The suitability of the DI as a quantitative uncertainty measure; we 
assume that a universal formal relationship between DI and per-
formance cannot be simply provided because it depends in large 
parts on the respective model complexity among other factors. 
Here we suggest fitting the relationship with shape- constrained 
additive models in moving windows of DI values but suggest more 
research using diverse datasets. We also suggest that (if compu-
tation times allow) multipurpose cross- validation is applied to 
model the relationship between DI and performance which to our 
knowledge has not been suggested before in the context of model 
validation and uncertainty assessment. We are not suggesting to 
replace (ensemble- based) uncertainty estimates such as predic-
tion intervals or standard deviations of predictions. Instead, we 
see DI and AOA as a useful addition to existing measures to ac-
count for a relevant source of uncertainty that has not been con-
sidered in the more commonly applied measures,

6. The applicability across machine learning algorithms; here, the 
Random Forest algorithm was used inspired by its multiple ap-
plications in the context of global mapping. However, the prob-
lem of predicting beyond the data applies to other algorithms as 
well. Though not explicitly studied here, the approach should 
be applicable to other machine learning algorithms in the same 
way (if variable importance can be estimated) and is also not 
restricted to spatial data. Further studies are needed here to 
confirm this.

Hence, the results shown here should be considered as a baseline 
for ongoing discussions on this topic. The methodology to estimate 
the AOA has been implemented and published in the R package cast 
(Meyer, 2021a). The simulation studies are available as open source 
R scripts, and can be easily modified to other simulation models and/
or other spatial sampling designs.

5  | CONCLUSIONS

We proposed a simple approach to map the AOA of spatial predic-
tion models, which is the area that features predictor properties 
the model was enabled to learn about. The AOA is, as a conse-
quence, the area where the model is expected to make predictions 
with an expected error that is comparable to the cross- validation 
error of the model. Predictions outside the AOA should be han-
dled with care or be left out from further consideration because 
the environmental properties differ too strongly from those ob-
served in the training data. Communicating the AOA is important 
to avoid misplanning when predictive mapping is used as a tool for 
decision- making (e.g. in the context of nature conservation), as well 
as to avoid propagation of massive errors when spatial predictions 
are used as input for subsequent modelling. We believe that the 
method proposed in this study will support critical assessment 
of overly optimistic data- driven prediction maps. We therefore 

suggest that the AOA should be provided alongside the prediction 
map and complementary to the communication of (cross- )validation 
performance measures and commonly applied (ensemble- based) 
prediction errors or intervals.
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