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Abstract. Regeneration is an essential demographic step that affects plant population persistence, recov-
ery after disturbances, and potential migration to track suitable climate conditions. Challenges of restoring
big sagebrush (Artemisia tridentata) after disturbances including fire-invasive annual grass interactions
exemplify the need to understand the complex regeneration processes of this long-lived, woody species
that is widespread across the semiarid western U.S. Projected 21st century climate change is expected to
increase drought risks and intensify restoration challenges. A detailed understanding of regeneration will
be crucial for developing management frameworks for the big sagebrush region in the 21st century. Here,
we used two complementary models to explore spatial and temporal relationships in the potential of big
sagebrush regeneration representing (1) range-wide big sagebrush regeneration responses in natural vege-
tation (process-based model) and (2) big sagebrush restoration seeding outcomes following fire in the
Great Basin and the Snake River Plains (regression-based model). The process-based model suggested sub-
stantial geographic variation in long-term regeneration trajectories with central and northern areas of the
big sagebrush region remaining climatically suitable, whereas marginal and southern areas are becoming
less suitable. The regression-based model suggested, however, that restoration seeding may become
increasingly more difficult, illustrating the particularly difficult challenge of promoting sagebrush estab-
lishment after wildfire in invaded landscapes. These results suggest that sustaining big sagebrush on the
landscape throughout the 21st century may climatically be feasible for many areas and that uncertainty
about the long-term sustainability of big sagebrush may be driven more by dynamics of biological inva-
sions and wildfire than by uncertainty in climate change projections. Divergent projections of the two mod-
els under 21st century climate conditions encourage further study to evaluate potential benefits of re-
creating conditions of uninvaded, unburned natural big sagebrush vegetation for post-fire restoration seed-
ing, such as seeding in multiple years and, for at least much of the northern Great Basin and Snake River
Plains, the control of the fire-invasive annual grass cycle.
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INTRODUCTION

Regeneration of long-lived woody plant spe-
cies in dryland ecosystems is an ecological pro-
cess that is limited by many variable factors. We
use the term regeneration here for plant repro-
ductive processes that include seed germination,
emergence, and seedling establishment to refer
to recruitment at a community perspective (Fen-
ner 2002). Regeneration is an essential demo-
graphic step that affects plant population
persistence, recovery after disturbances such as
fires, land development, and die-off events, and
potential migration to track suitable climate con-
ditions (Fenner 2002). Understanding regenera-
tion of long-lived woody species is often
challenging because observational and experi-
mental studies are often too short to capture a
sufficient number of lifecycles and regeneration
outcomes that represent the range of environ-
mental conditions, particularly when these are
not stationary or have a long periodicity (e.g.,
conditions influenced by the Pacific Decadal
Oscillation PDO). While infrequent regeneration
may suffice to maintain undisturbed, reproduc-
tive populations in stationary environments, it
creates major challenges in the context of climate
change and for current and future resource man-
agement and restoration planning (Shriver et al.
2019).

The big sagebrush region, that is, dryland
ecosystems dominated by big sagebrush and
perennial bunchgrasses, historically covered
more than half a million square kilometers but
has been reduced by approximately 50% in
recent decades (Young et al. 1979, Davies et al.
2011, Finch et al. 2016, Rigge et al. 2020). Multi-
ple factors have contributed to decreasing and
fragmenting big sagebrush ecosystems, includ-
ing infrastructure, resource extraction, agricul-
ture, conifer expansion, and most prevalent in
the western part of the region, positive feed-
backs between invasive annual grasses (mostly
Bromus tectorum, cheatgrass, and Taeniatherum
caput-medusae, medusahead) and fire (Davies et
al. 2011, Finch et al. 2016). Additionally, recent
warming associated with climate change has
been impacting the big sagebrush region by
reducing snowpack and snow season (Mote et
al. 2018, Zeng et al. 2018), increasing burned

area and fire season length (Dennison et al.
2014, Abatzoglou and Williams 2016), and exac-
erbating regional droughts, particularly in the
Southwestern U.S. (Williams et al. 2020). Pro-
jected 21st century climate change (U.S. Global
Change Research Program 2017) is expected to
intensify these trends (Coates et al. 2016) and
increase drought risk (Cook et al. 2015), partic-
ularly in warm and southern areas of the big
sagebrush region, whereas projected increases
in growing season duration and cold-season
precipitation may promote big sagebrush in
cool and northern regions (Schlaepfer et al.
2012a, Palmquist et al. 2016a, Renwick et al.
2018, Bradford et al. 2019, 2020, Flerchinger et
al. 2020).
The challenge of restoring big sagebrush (Arte-

misia tridentata) is a prominent example in west-
ern North America of the need to understand the
complex regeneration processes of a long-lived,
woody species in a variable environment (Davies
et al. 2011, 2018, Schlaepfer et al. 2014b, Brabec et
al. 2015, Germino et al. 2018, Shriver et al. 2018).
Restoration of big sagebrush is slow, and out-
comes, particularly of seeding efforts, are often
unpredictable and mixed (Knutson et al. 2014,
Rottler et al. 2018, Shriver et al. 2019, Davies et
al. 2020). Because of the importance of the big
sagebrush region (Davies et al. 2011, Finch et al.
2016), detailed management frameworks have
been developed (Finch et al. 2016, Chambers et
al. 2017, Crist et al. 2019), and the temporal, spa-
tial, and financial extent of restoration activities
in the big sagebrush region are among the largest
in North America (Young et al. 1979, Pilliod et al.
2017, Copeland et al. 2018). Despite such large-
scale, long-term efforts, successful restoration of
big sagebrush remains rare because of the highly
variable, but prevailing dry conditions in dry-
land environments and because of several speci-
fic characteristics of big sagebrush plants, which
cannot resprout after fire, have short-lived seeds
with limited dispersal, and seedlings that can be
outcompeted, particularly by invasive plant spe-
cies (reviewed by Schlaepfer et al. 2014b). Cur-
rent frameworks for the management of the big
sagebrush region often rely on static metrics
which do not account for climate change or
directly incorporate regeneration (Bradford et al.
2019, 2020). Detailed understanding of
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regeneration controls, particularly quantitative
models of regeneration response to environmen-
tal fluctuations, would be an essential step
toward developing accurate short-term regenera-
tion forecasts (O’Connor et al. 2020) and long-
term projections of plant population demograph-
ics and viability under climate change (Shriver et
al. 2021).

Models are our main tool to understand com-
plex processes such as regeneration of big sage-
brush. These models can be used to develop
projections under climate change scenarios that
inform long-term management and restoration
strategies (Clark et al. 2001, Oreskes 2003, Seidl
2017, Dietze et al. 2018). Even though validating
models against observations at a future time is
impossible, many modeling considerations con-
tribute to credible long-term projections (Mou-
quet et al. 2015, Grimm and Berger 2016a)
including model type (Pennekamp et al. 2017),
model complexity (Coelho et al. 2019), under-
standability (Rastetter 2017, Gramelsberger et al.
2020), transferability (Yates et al. 2018), and
robust estimates of model uncertainties (Dietze
2017). For instance, models can be validated
against available observations, and model’s abil-
ity to project under novel geographic or environ-
mental conditions (transferability) can be
estimated from strategically holding out groups
of observations (Yates et al. 2018). Based on theo-
retical considerations, process-based models
should transfer better to novel situations than
regression-based models (Grimm and Berger
2016b, Radchuk et al. 2019), although the perfor-
mance of process-based models is often con-
strained by high requirements of data and
incomplete process understanding for model
building (Pennekamp et al. 2017, Yates et al.
2018, Bouchet et al. 2019). An alternative
approach to increase our confidence in model
outcomes in the absence of future observations is
to compare multiple, ideally independent models
and assess robustness of outcomes as, for
instance, the climate science (e.g., Knutti 2018),
hydrological (e.g., Schellekens et al. 2017), and
ecological niche (e.g., Hao et al. 2019) modeling
communities are practicing with multi-model
ensemble experiments. While making skillful
predictions is difficult, rare, and generally only
feasible for short time periods (Oreskes 2003,
Dietze et al. 2018), models can be useful to

generate hypotheses and understanding of com-
plex processes, and to explore outcomes under
what-if scenarios (Oreskes 2003).
Here, we investigate how two complementary

models can contribute to our understanding of
contemporary and future big sagebrush regener-
ation across the historical and potential future
sagebrush region. One model is process-based
and was designed to represent, in general, all rel-
evant big sagebrush regeneration processes in
undisturbed natural vegetation (Schlaepfer et al.
2014a, b). The other model is regression-based
and was developed parsimoniously to identify
and quantify the most relevant factors affecting
recent big sagebrush restoration seeding out-
comes following fire across the central and north-
ern areas of the Great Basin and the Snake River
Plain (Fig. 1 and Appendix S1: Fig. S1), areas
with high impacts of cheatgrass and fire (Shriver
et al. 2018). Both models represent major
environmental controls on big sagebrush regen-
eration including meteorological and ecohydro-
logical (e.g., soil moisture) factors (Fig. 2). These
models provide two different perspectives on big
sagebrush regeneration and, in combination,
may represent the best available insights about
future big sagebrush regeneration dynamics. We
apply both models to address three specific
objectives: (1) examine the geographic patterns of
big sagebrush regeneration probabilities that the
two different models project under historical
conditions and future climate scenarios; (2) quan-
tify the robustness of model projections, for
example, the consistency among climate models
in projected changes in regeneration for future
time periods; and (3) identify how model predic-
tions for regeneration potential relate to environ-
mental site characteristics like climate, soil
moisture, and soils.

METHODS

Description of simulation experiment
We modeled big sagebrush regeneration based

on daily meteorological and ecohydrological vari-
ables across the historical and potential future
geographic range of big sagebrush distribution in
the western United States. We simulated daily
ecohydrological variables with the SOILWAT2
ecosystem water balance model in a full-factorial
simulation experiment that is described in detail
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by Bradford et al. (2019). SOILWAT2 is a process-
based daily simulation model that represents the
soil profile with multiple soil layers and vegeta-
tion cover as composed of multiple co-occurring
plant types responsive to atmospheric CO2

concentrations. The code is available as an R
package (Schlaepfer and Andrews 2019, Sch-
laepfer and Murphy 2019). Successful model
applications cover global dryland ecosystems
(e.g., Bradford et al. 2017, Schlaepfer et al. 2017,

Fig. 1. Historical model outcomes: Maps and scatterplot between predictions of the potential regeneration
probability of big sagebrush, p(GISSM), (a) and of the probability that big sagebrush restoration succeeds follow-
ing fire and seeding, p(Shriver2018), (b) under historical conditions. The dark orange polygon in panel a indicates
the applicable extent of the Shriver2018 model (including the Great Basin and Snake River Plain). Gray represents
EPA level III ecoregions (EPA 2011), see Appendix S2: Fig. S1 and Appendix S1: Table S3. Dark blues in scatter-
plot between model outcomes for the joint extent (c) indicate a higher density of gridcells, red line represents a
1:1 relationship, and orange line is a locally fitted polynomial regression line (loess).
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Fig. 2. Conceptual diagrams for GISSM (a) and Shriver2018 (b) models. Forcing variables (a) and predictor
variables (b), in white boxes, are connected to processes (gray boxes; number of parameters in parentheses) with
dotted arrows. See original publications for full details of the two models: GISSM which predicts the potential
regeneration probability of big sagebrush p(GISSM) (Schlaepfer et al. 2014a) and the Shriver2018 model which
predicts the probability that big sagebrush restoration succeeds following fire and seeding p(Shriver2018) (Shri-
ver et al. 2018).
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Tietjen et al. 2017) and North American dry
grasslands (e.g., Bradford et al. 2014b, Lauenroth
et al. 2014), dry forests (Bradford et al. 2014a),
and shrublands (e.g., Schlaepfer et al. 2012b,
Palmquist et al. 2016b, Renne et al. 2019) includ-
ing simulations under climate change projections
(Schlaepfer et al. 2012a, c, 2015, Palmquist et al.
2016a, Bradford et al. 2019).

Here, we used SOILWAT2 simulations for
23,202 gridcells at a 10-km resolution from the full
simulation experiment (Bradford et al. 2019) that
cover the geographic range of big sagebrush
ecosystems. We determined the potential histori-
cal and future distribution of big sagebrush
ecosystems based on the Gap Analysis Program
(U.S. Geological Survey Gap Analysis Program
2016) and information from the Landfire Biophys-
ical Settings (LANDFIRE 2014) and removed bio-
logically unrealistic cells (i.e., cells that fall in the
upper 2.5% of mean annual precipitation or in the
upper 1% of mean annual temperature; PRISM
Climate Group 2020). The simulation experimen-
tal factors included five soil textures, three 31-
year time periods, and 144 climate conditions that
were applied to each gridcell. One soil texture
treatment extracted sand %, clay %, volume of
gravel, and bulk density from 1-km gridded
NRCS STATSGO (Miller and White 1998) and
aggregated values for each gridcell; the remaining
four soil texture treatments kept soil texture val-
ues constant across gridcells, that is, we used clay
loam (27% sand, 35% clay), sandy loam (66%
sand, 9% clay), silt loam (16% sand, 9% clay), and
a second silt loam (30% sand, 18% clay) to repre-
sent the range of soil textures occurring across big
sagebrush ecosystems. We used three time peri-
ods 1980–2010 (historical), 2020–2050 (near-
future), and 2070–2100 (end 21st century future).
We used daily 1/8-degree gridded meteorological
data from Maurer et al. (2002) for the historical
time period. We extracted monthly precipitation
and temperature time series from the 1/8-degree
spatially downscaled CMIP5 climate projections
from the "Downscaled CMIP3 and CMIP5 Cli-
mate and Hydrology Projections" archive (http://
gdo-dcp.ucllnl.org/downscaled_cmip_projec
tions/, Maurer et al. 2007) from all participating
general circulation models (GCMs) for two repre-
sentative concentration pathways, that is, 37
GCMs under the medium mitigation and stabi-
lization scenario, representative concentration

pathway (RCP) 4.5; 35 GCMs under the high
baseline, no-policy scenario RCP8.5 (Appendix
S1: Table S1; van Vuuren et al. 2011). We gener-
ated daily meteorological forcing time series with
the hybrid-delta quantile mapping approach
(Hamlet et al. 2010, Tohver et al. 2014) to combine
monthly GCM projections for historical and
future time periods with historical daily data.

Description of published big sagebrush
regeneration models
We used the daily simulation output of SOIL-

WAT2 to drive two previously published big
sagebrush regeneration models (Fig. 1): GISSM
and the Shriver2018 model. The two models rep-
resent related, yet distinct aspects of big sage-
brush regeneration; however, both models
assume that seeds are not a limiting factor and
thus represent potential regeneration.
The GISSM model predicts the probability (fre-

quency) of years when big sagebrush seedlings
survive in undisturbed natural vegetation (Sch-
laepfer et al. 2014a), here in short “p(GISSM)”.
The model development goal was to represent
key processes in a simulation model of big sage-
brush regeneration that accounted for important
environmental factors (Schlaepfer et al. 2014b)
while biotic processes such as facilitation and
competition are implicitly represented to the
extent as they correlate with environmental fac-
tors at the sites used to estimate parameters. It
requires daily forcing variables for soil water
potential of each soil layer with roots, snowpack,
minimum and maximum air temperature, and
minimum and maximum shallow soil tempera-
ture (Fig. 1a). The 30 model parameters were
estimated based on observed data from sites
with natural vegetation in the absence of cheat-
grass, heavy grazing, and physical or chemical
sagebrush removal and our evaluation found
that 74% of variation in annual outcomes of seed-
ling survival was explained (Schlaepfer et al.
2014a). The code is available as part of a R pack-
age (Schlaepfer 2020). The GISSM model has
been applied to historical conditions across the
western US (Schlaepfer et al. 2014a) and to his-
torical and future climate conditions for leading
and trailing edges of the suitable big sagebrush
habitat (Schlaepfer et al. 2015). Additionally,
GISSM predictions and sensitivities agreed well
with three independent models in a multi-model
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big sagebrush comparison effort that, besides
GISSM, included a dynamic vegetation model, a
random forest spatial correlation model, and a
mixed-effects temporal correlation model (Ren-
wick et al. 2018).

The Shriver2018 model represents the proba-
bility of big sagebrush establishment following
fire and seeding as active management (Shriver
et al. 2018), here in short “p(Shriver2018).” The
model development goals included the inference
of the impact of environmental conditions fol-
lowing seeding on regeneration probabilities for
study sites in the central and northern Great
Basin and the Snake River Plain. Effects of fire
and cheatgrass are implicitly represented by the
model to the extent as they correlate with the
environmental factors at the sites used to esti-
mate model parameters as well as by the selec-
tion criteria that were used to decide if
restoration seeding was applied at a site follow-
ing a fire. We limited our application of the Shri-
ver2018 model to the original study extent
(Fig. 1) to avoid geographic extrapolation into
areas where we know that big sagebrush regen-
eration responds to different sets of factors, for
example, the annual grass-fire cycle is not a dom-
inant influence (e.g., Davies and Bates 2019, Hak
and Comer 2020). The model is a logistic regres-
sion with two input variables, mean soil mois-
ture from day 70 to 100 in the 0–5 cm soil layer
(VWCspring), and mean air temperature from
day 1 to 250 (meanT250; Fig. 2b):

logit pð Þ ¼ 3:306 þ 2:499 � VWCspring � 0:289
�meanT250

The best model structure and the resulting
three model parameters were estimated using a
Bayesian framework (Shriver et al. 2018); how-
ever, we considered here only the deterministic
part of the model.

Objective 1: Geographic patterns of big sagebrush
regeneration

We mapped predictions of both models for big
sagebrush regeneration during the historical time
period under gridcell-specific soil textures to
explore geographic patterns across the full geo-
graphic range of big sagebrush ecosystems for
GISSM and across the subset covering the central
and northern Great Basin and the Snake River

Plain for Shriver2018. We mapped changes in
modeled big sagebrush regeneration between a
future and the historical time period as the med-
ian values across GCMs for each RCP and time
period combination. We summarized spatial pat-
terns by relevant EPA Level III Ecoregions (EPA
2011), see Appendix S2: Fig. S1.
We measured the strength of dependence

between predictions of the two models with the
unbiased distance correlation statistic (Szekely
and Rizzo 2009) using function “dcor2d” of the R
package “energy” version 1.7.5 (Rizzo and Sze-
kely 2019). (Brownian) distance correlation quan-
tifies both linear and non-linear associations in
arbitrary dimensions and is zero only for inde-
pendence (Szekely and Rizzo 2009).

Objective 2: Robustness of projections
We measured three metrics to quantify the

robustness of model projections to variation in
forcing variables under future time periods: (1)
agreement across GCMs for each RCP and time
period combination, (2) contributions of the treat-
ments to the factorial simulation experiment, and
(3) degree of extrapolation. First, we calculated
the agreement for each gridcell as the percentage
of GCMs under which the direction of change
between future and historical regeneration model
responses was the same as the direction of the
median response among runs for each RCP and
time period combination. We considered both
regeneration models as deterministic and did not
quantify uncertainty in the regeneration model
parameters themselves. Second, we quantified
the contributions of the experimental treatment
factors, that is, soil types, time periods, RCPs, and
GCMs, and of their combined effects with a vari-
ance partitioning approach using the function
“Anova” of the R package “car” version 3.0.5 (see
Appendix S3 for details; Fox and Weisberg 2019).
Third, we quantified the degree of model extrapo-
lation beyond the environmental space that was
available during model development using the
univariate (NT1) and multivariate (NT2) distance
metrics introduced byMesgaran et al. (2014).

Objective 3: Interpretation of model outcomes
To evaluate how well can we summarize, sim-

plify, and interpret the regeneration models, we
quantified statistical relationships between
model outcomes and (1) two sets of predefined
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predictor variables and (2) sets of best-
performing predictor variables. We calculated
Root-Mean-Square Deviations (RMSD) and the
coefficient of variation (CV) of RMSD as well as
pseudo-R2 values to quantify how well the statis-
tical relationships summarized GISSM and Shri-
ver2018 model outcomes. We used function
“r2beta” of the R package “r2glmm” version
20200305 (Jaeger 2020) for binomial GLMs
according to Jaeger et al. (2017) and function
“r.squaredGLMM” of the R package “MuMIn”
version 1.43.15 (Bartoń 2019) to calculate condi-
tional pseudo-R2 for linear mixed-effects models
(LMM) according to Nakagawa et al. (2017).

We fit binomial GLMs between model out-
comes for the historical time period and gridcell-
specific soils for predictors and model structure
used by the Shriver2018 model. For GISSM, this
approach quantifies how different the two mod-
els are; for Shriver2018, this estimates how well
the relationship of the model can be recovered by
our model application.

To isolate and estimate the explanatory power
of soil texture variables, we used the part of the
simulation experiment with the four fixed soil
types for the historical time period. For each
gridcell, we calculated the pairwise differences
between the fixed soil types for both model out-
comes and soil texture (sand, clay). We used
LMMs with the function “lmer” of the R package
“lme4” version 1.121 (Bates et al. 2015) to fit dif-
ferences in outcomes against sand and clay dif-
ferences, their interactions, and squared values
where an indicator of the pairs of soil types
served as random error of the intercepts.

We carried out a variable selection procedure
for the two following statistical model fits: We fit
binomial GLMs between model outcomes for the
historical time period and gridcell-specific soils
for the selected predictors, their interactions, and
squared values. Additionally, for each RCP,
GCM, time period, and gridcell, we calculated
the differences between the future and the histor-
ical time period under gridcell-specific soils. For
each RCP and time period, we fit LMMs between
differences in model outcome differences and
selected predictors, their interactions, and
squared values where GCM served as random
error of the intercepts.

The variable selection procedure for each of
these two statistical fitting exercises based on the

strongest predictors from an ascending hierarchi-
cal variable clustering to avoid selecting strongly
related variables. Specifically, we started with the
21 predictor variables that were considered rele-
vant in previous work on big sagebrush regener-
ation (Appendix S1: Table S2, Schlaepfer et al.
2014a, 2015, Shriver et al. 2018). We transformed
several of these variables to increase the symme-
try of their distributions (Appendix S1: Table S2).
The application for fitting differences between
future and historical time period considered the
historical values of these 21 predictor variables in
addition to the differences of these 21 variables
between the future and historical time periods;
we used future median values across GCMs for
each RCP and time period. We then calculated
bivariate unbiased distance correlations (see
objective 1) between each predictor and each
model outcome as an indicator of the strength of
a predictor. We determined the hierarchical clus-
tering of the predictors using function “hclust-
var” of the R package “ClustOfVar” version 1.1
(Chavent et al. 2019). We determined the stability
of the clustering with the “stability” function of
the same package which resulted in two stable
clusters for the historical application and four
clusters for the application of future change. For
each cluster, we selected the predictor with the
highest distance correlation value and removed
any predictor if they had a higher distance corre-
lation than 0.5 with any previously selected pre-
dictors from different clusters.
We carried out all analyses in R version 3.6.1

(R Core Team 2019). Data generated during this
study are available from the USGS ScienceBase-
Catalog (Schlaepfer and Bradford 2021) and code
from github/zenodo (Schlaepfer 2021).

RESULTS

Objective 1: Geographic patterns of big sagebrush
regeneration
Under 1980–2010 conditions, the process-

based GISSM predicted a mean potential regen-
eration probability of p = 0.44 � 0.20 (mean � 1
SD) for big sagebrush with values ranging
between 0 and 1 across the geographic range of
big sagebrush ecosystems (Fig. 1, Appendix S1:
Table S3). GISSM predicted the highest values
for the Columbia Plateau, parts of the Colorado
Plateau, Sierra Nevada, and Snake River Plain;
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the lowest values were predicted for southern,
warm areas such as the Mojave range and the
Chihuahuan Desert and for mountainous areas
such as the Southern and Middle Rockies and the
Idaho Batholith ecoregion. GISSM projected
areas of increases in potential regeneration prob-
ability (71–78% of extent) and decreases (13–
16%) for future time periods and climate change
scenarios compared to 1980–2010 climate condi-
tions (Fig. 3, Table 1). Projected increases were,
on average, largest for areas at high elevation
and in the north (Fig. 3, Appendix S2: Fig. S2,
Appendix S1: Table S3). The most extensive
decreases were projected for mid-century RCP
4.5 and end-century RCP 8.5; these areas were
located predominantly in the southern portions
of the study area (particularly under end-century
RCP 8.5) and low elevation portions of several
ecoregions including the Columbia Plateau, Col-
orado Plateau, Great Basin, and Snake River
Plain; however, they also included northeastern
parts in Montana and the Bighorn Basin in
Wyoming (Appendix S2: Fig. S2, Appendix S1:
Table S3).

The regression-based Shriver2018 model pre-
dicted a regeneration probability of p = 0.71 �
0.14, with values between 0.24 and 0.99, for big
sagebrush restoration seeding following fire
across the central and northern Great Basin and
the Snake River Plain for 1980–2010 climate con-
ditions (Fig. 1, Appendix S1: Table S3). Shri-
ver2018 predicted the highest values at high
elevation areas and the lowest values in low ele-
vation areas such as the western portion of the
Snake River Plain. Shriver2018 projected, consis-
tently and geographically relatively uniformly,
decreases for future time periods and climate
change scenarios compared to 1980–2010 climate
conditions (Fig. 3, Table 1). Under RCP 4.5 pro-
jections, they ranged from Δp = −0.09 � 0.02 for
mid-century to Δp = −0.18 � 0.04 for end-
century; under RCP 8.5 projections, they ranged
from Δp = −0.11 � 0.03 for mid-century to Δp =
−0.32 � 0.05 for end-century (Appendix S2: Fig.
S2, Appendix S1: Table S3).

Objective 2: Robustness of projections
Future GISSM projections agreed across the

study area on average by 83 � 22% in the direc-
tion of the outcome across GCM climate projec-
tions under RCP 8.5, that is, GISSM runs forced

by at least 29 out of the 35 GCM climate projec-
tions were consistent in projecting increases and
decreases, respectively, in the outcome (Table 1,
Fig. 4, Appendix S2: Fig. S3, Appendix S1: Table
S3). The proportion of areas with a high (>90%)
agreement among GCMs in that GISSM projec-
tions increased, rose from 35% mid-century to
53% end-century under RCP 4.5, and from 43%
to 67% under RCP 8.5 (Table 1, Fig. 4). While the
same pattern was true for areas with projected
decreases, areas with a high agreement in
decreases represented an overall smaller propor-
tion with 6% to 8% under RCP 4.5 and 7% to
19% under RCP 8.5 (Table 1, Fig. 4).
Future Shriver2018 projections agreed to 100%

across the entire area in the direction of the
response; there was no variation in direction of
outcomes among GCM climate projections for
any simulated gridcell (Table 1, Fig. 4, Appendix
S2: Fig. S3, Appendix S1: Table S3).
Across the entire simulation experiment, 66%

of the GISSM outcome variation was determined
by time period and its interactions with GCMs
and RCPs with considerable geographic varia-
tion; in comparison, soil types explained 5%
(Fig. 5; Appendix S2: Fig. S4; Appendix S1:
Table S4). GCMs and the GCM x RCP interaction
dominated the explanatory power within mid-
century (81%) and end-century (74%) time peri-
ods while soil types determined 15% and 12%,
respectively.
Similarly, 69% of the Shriver2018 model out-

come was explained by time period alone with
little geographic variation. Within the mid-
century time period, however, GCMs and soil
types were equally important with 43% and 48%,
respectively, whereas the GCM × RCP interaction
was not explaining much variation. Within the
end-century time period, soil type lost most of
the explanatory power (12%) while RCPs became
relevant (47%; Fig. 5; Appendix S1: Table S4).

Objective 3: Regeneration patterns in relation to
climate and soils
Historical GISSM model outcomes were best

summarized by the two variables mean annual
temperature and spring frost exposure (Fig. 6,
Table 2, Appendix S1: Table S6). GISSM out-
comes showed a unimodal pattern along mean
annual temperatures with a peak around 10°C;
spring frost exposure affected outcomes
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negatively, mostly at intermediate and warm
locations. Pseudo-R2 suggested that this sum-
mary explained 62% of the variation in the
GISSM outcome with average deviations of the
summary from mean model outcomes by 30%

(Table 2). This is a better summary than one
using the same predictors as in the Shriver2018
model, that is, mean temperatures in the first
250 d of a year and spring VWC at 0–5 cm depth
(Table 2; Appendix S2: Fig. S9).

Fig. 3. Future projections: Maps of sagebrush regeneration projections by GISSM (a, b) and by Shriver2018
(c, d) under RCP 8.5 end-of-century (2070–2100) time period. Median projections across GCM-driven runs in
panels a and c (color legend in panel a) and median change from historical (1980–2010) time period (see Fig. 2) in
panels b and d (color legend in panel b). Results for all RCPs and time periods in Appendix S2: Fig. S1.
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We recovered the predictors of the Shriver2018
model with the variable selection algorithm
(Fig. 6, Appendix S1: Table S6). Pseudo-R2 con-
firmed that these predictors explained >99% of
the Shriver2018 outcome with average deviations
by almost 0% (Table 2).

Differences in soil textures among the fixed
experimental soil types poorly summarized the
associated differences in outcomes of GISSM
among these soil types with a low pseudo-R2

value and average deviations larger than seven
times the mean model outcome (Table 2, Appen-
dix S2: Fig. S10). These soil texture differences
captured, however, most of the variation in the
Shriver2018 outcome, even though average devi-
ations of the summary were nearly of the same
size as the mean model outcome.

The four predictors that summarize GISSM
model outcome differences between one of the
future time period × RCP combinations and the
historical time period included growing degree
days under historical conditions, two variables
quantifying change in snow, and change in pre-
cipitation (Fig. 7; Appendix S2: Figs S11-S13).
There was an important interaction between

Table 1. Percentage of area for which decreases or
increases in sagebrush regeneration probabilities are
projected for mid- and end-century time periods.

Response Agreement

RCP 4.5 RCP 8.5

2020–
2050

2070–
2100

2020–
2050

2070–
2100

GISSM
Decrease Median 16 13 14 16

>75% 5 4 4 7
>90% 1 1 1 3

Increase Median 71 78 74 78
>75% 48 61 52 64
>90% 25 41 32 52

Shriver2018
Decrease Median 100 100 100 100

>75% 100 100 100 100
>90% 100 100 100 100

Increase Median 0 0 0 0
>75% 0 0 0 0
>90% 0 0 0 0

Note: Agreement in response direction across GCM-forced
runs (n = 37 under RCP 4.5 and n = 35 under RCP 8.5) refers
to the sign of the median value and to areas where >75% as
well as >90% of runs agree in direction of response.
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Fig. 4. Agreement in future projections: Percentage
of GCM-driven runs under RCP 8.5 end-of-century
(2070–2100) time period (n = 35) that agree on direc-
tion of the response in the probability of regeneration
compared to historical time period. Positive values
indicate agreement in a median increase or no change;
negative values indicate agreement in a median
decrease. Black polygons mark areas with at least 90%
agreement. Results for all RCPs and time periods in
Appendix S2: Fig. S2.
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Fig. 5. Relative importance of factors: Percentage of explained variance for sagebrush regeneration projections
by GISSM (a, c, e) and by Shriver2018 (b, d, f) by simulation experimental factors: time periods (3×), GCMs
(35×), RCPs (2×), soil types (5×), two-way interactions, the three-way interaction time × RCP × GCM, and all
remaining higher-order interactions pooled (residuals) for the full experiment (a, b; 1050 response values per
gridcell), and for two future time periods 2020–2050 (c, d) and 2070–2100 (e, f; 350 response values per gridcell
each). Violins represent the density distribution of values across gridcells where the white dot represents the
median and the vertical bar spans the interquartile range. Gray hashed rectangles indicate a fixed time period.
See Appendix S3 for full method details. Note: the two models were applied across different geographic extents
(see Fig. 1).
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growing degree days and change in the propor-
tion of precipitation that falls as snow: GISSM
projected the largest increases in potential regen-
eration probabilities for locations with low his-
torical growing degree days and the largest
projected future decreases in the ratio of snow to
precipitation; conversely, the largest decreases
in potential regeneration probabilities were

projected for locations with medium to high his-
torical growing degree days and the largest pro-
jected future decreases in the ratio of snow to
precipitation (Fig. 7a,b).
For the Shriver2018 model, the four selected

predictors included only variables measuring
change between a future and the historical time
period; they were change in growing degree
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Fig. 6. Interpretation of historical model outcomes: Ability of the selected best-performing predictor variables,
mean annual temperature (MAT), spring frost exposure, and volumetric water content (VWC) in 0–5 cm soils
during the spring, to summarize outcomes of GISSM (a, b) and the Shriver2018 models (c, d) under historical
conditions for gridcell-specific soils. Dark blue hues indicate a higher density of gridcell values; the three colored
lines represent conditional relationships between x and y where the other predictor variable (inset legend) was
held constant at its 2.5% (red), 50% (green), and 97.5% quantiles (blue). Note: the two models were applied across
different geographic extents (see Fig. 1).
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days, change in precipitation, and two variables
quantifying change in recharge. Most of the Shri-
ver2018 model outcome was explained by
change in growing degree days with large
increases related to large projected future
decreases in model outcomes (Fig. 7e).

Projections of both models, GISSM and Shri-
ver2018, were better summarized for the end-
century than mid-century time period and under
RCP 8.5 than RCP 4.5 conditions (Table 2). How-
ever, the Shriver2018 model was easier to sum-
marize than GISSM: Under end-century time
period and under RCP 8.5 conditions, the sum-
mary of GISSM explained 54% variation with
mean deviations of 92% of mean model outcome,
whereas the summary explained 87% of the Shri-
ver2018 model with mean deviations of 12%
(Table 2).

DISCUSSION

Quantitative, predictive understanding of
regeneration for long-lived woody plants in dry-
lands is difficult to develop but will be essential
for projecting the future of these species. Regen-
eration is a foundational demographic process
that, in some regions, can restrict the persistence
and recovery of long-lived plant populations.
Population and species-level constraints imposed
by failed regeneration may grow as temperatures
and drought risks rise under climate change
(Jackson et al. 2009) and as wildfires and human
land use prevalence increase (Davies et al. 2011,
Shriver et al. 2018). Big sagebrush is a prime

example of a long-lived dryland plant whose dis-
tribution, abundance, and potential future viabil-
ity may be constrained by regeneration. The
contemporary relevance of the big sagebrush
regeneration challenge is highlighted by the
unpredictable and often mixed outcomes from
big sagebrush restoration efforts (Knutson et al.
2014, Rottler et al. 2018, Shriver et al. 2019,
Davies et al. 2020).
Here, we integrated insights from two quanti-

tative models of big sagebrush regeneration to
provide the best available insights into contem-
porary and future regeneration probabilities
under natural conditions and for post-fire
restoration seeding. Both regeneration models
have been successfully evaluated against field
observations: The process-based GISSM was
evaluated at sites under natural conditions with-
out anthropogenic disturbances (Schlaepfer et al.
2014a), and the regression-based Shriver2018
was evaluated at locations with post-fire big
sagebrush restoration seeding (Shriver et al.
2018). Thus, differences in model outcomes are
not necessarily model disagreements (Fig. 1c).
Instead, these differences reflect that the two
models represent related and complementary
aspects of big sagebrush regeneration associated
with different drivers. Divergent drivers and
resulting model outcomes are apparent, for
instance, in the lower Snake River Plain (Fig. 1)
where big sagebrush was historically widespread
and has become less abundant due to land use,
fire, and invasive annual grasses (Knick and
Rotenberry 1997, Boyte et al. 2019). In this area,

Table 2. Ability of sets of predictor variables to summarize GISSM and Shriver2018 model outcomes p(.) as quan-
tified by (1) pseudo-R2 and (2) root mean square deviation (RMSD) and coefficient of variation (CV) of the
RMSD.

Response to summarize Predictor set

Pseudo-R2 RMSD and CV (%)

GISSM Shriver2018 GISSM Shriver2018

p(historical) Selected predictors 0.62 0.99 0.13/30% 0.00/0%
p(historical) Predictors of Shriver2018 0.24 0.99 0.18/40% 0.00/0%
p(soil type i) – p(soil type j) Soil texture differences

among soil types
0.17 0.99 0.04/746% 0.01/−83%

p(mid-century RCP 4.5) – p(historical) Selected predictors 0.22 0.94 0.10/160% 0.02/−16%
p(end-century RCP 4.5) – p(historical) 0.28 0.96 0.11/110% 0.02/−13%
p(mid-century RCP 8.5) – p(historical) 0.26 0.93 0.10/136% 0.02/−15%
p(end-century RCP 8.5) – p(historical) 0.54 0.87 0.13/92% 0.04/−12%
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Shriver2018 estimated low probabilities of
restoration seeding success, a result that reflects
current patterns modified by agriculture, fire,
and cheatgrass invasion, whereas GISSM pre-
dicted high potential regeneration that reflect the
area’s historical climatic suitability for big sage-
brush. In general, the process-based GISSM rep-
resents the influence of climate fluctuations on
potential regeneration in the absence of competi-
tion from introduced species and anthropogenic
disturbances. By contrast, the regression-based
Shriver2018 model implicitly incorporates the
consequences of interactions among wildfire and
invasive annual grasses to the extent that these
are correlated with moisture availability and
temperature at the original training sites. Fur-
thermore, the Shriver2018 model also implicitly
incorporates additional disturbances such as a
history of livestock grazing, physical soil distur-
bance, and possibly failed past attempts at
restoration because these factors are often linked
to invasive annual grasses (e.g., Hak and Comer
2020). Results from these models, in combina-
tion, enhance our perspective on big sagebrush
regeneration probability and post-fire restoration
seeding outcomes under a wide range of climate
and soil conditions and suggests several insights
about the potential challenges of sustaining big
sagebrush regeneration that were not evident
from either model alone.

First, contrasting regeneration potential
between the models implies insights about the
contemporary challenge of promoting big sage-
brush regeneration. Specifically, differences in
contemporary outcomes between the two regen-
eration models reflect the differences in the
importance of drivers in the context of natural
vegetation vs. big sagebrush restoration seeding
following a fire. The process-based GISSM repre-
sents regeneration processes in undisturbed nat-
ural vegetation which included reduced
regeneration due to too much snow, too low or
too high temperatures, and acute or chronic too
low or too much soil moisture (Fig. 2; Schlaepfer
et al. 2014a, b). The regression-based Shriver2018
model quantifies the most relevant environmen-
tal factors affecting recent big sagebrush post-fire
restoration seeding outcomes (Shriver et al.
2018). Summarizing the Shriver2018 model indi-
cated reduced restoration seeding success follow-
ing fire in areas with high temperatures or low

spring soil moisture (Fig. 3). For instance, the
model does not represent a limit of regeneration
at cold temperatures likely because of an absence
of high elevation, cold conditions in the original
set of training sites (Shriver et al. 2018). Further-
more, the Shriver2018 model may also be
weighted toward sites that are both particularly
prone to wildfire (e.g., hotter and drier than the
sagebrush region as a whole) and considered
amenable to subsequent seeding, which they
received. Summarizing GISSM indicated that
both high and low temperatures as well as spring
frost exposure, but not at cold sites, reduced
regeneration predictions. This interaction
between temperature and frost may represent a
high seed dormancy and slow germination rate
at cold sites (Meyer and Monsen 1992) that may
contribute to low damage levels due to early
spring frost at these cold sites. Overall, the more
limited regeneration outcomes predicted by
GISSM compared to Shriver2018 across most of
the study area likely reflected the positive effects
that restoration seeding can have in some situa-
tions (e.g., Germino et al. 2018, Davies and Bates
2019), but see others (e.g., Davies et al. 2013,
2020), the threshold of one big sagebrush plant to
define restoration success (Shriver et al. 2018),
and the complexity of regeneration processes
under the large variety of environmental condi-
tions affecting big sagebrush regeneration under
natural conditions (Schlaepfer et al. 2014b) which
can more directly be represented by a process-
based model (Yates et al. 2018).
Second, our results have information about the

future of big sagebrush regeneration in the con-
text of interacting climate change, enhanced
wildfire frequency, and human land use. The
process-based GISSM model suggested increased
potential regeneration under future climate pro-
jections across part of the big sagebrush range
and decreases for the warmest regions. Future
GISSM projections were, across large areas,
robust and in high agreement among participat-
ing GCMs; however, our assessment of robust-
ness accounted for variation in forcing inputs
and did not include model uncertainty. Degree of
agreement correlated positively with magnitude
of projected change reflecting that variation
among GCMs was the most important experi-
mental factor (Fig. 5). GISSM projected changes
were not well summarized by simple
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explanations because of considerable residual
variation. Nevertheless, overall trends emerged
that suggested increased potential regeneration
particularly across those parts of the big sage-
brush range that have a small number of growing
degree days under current conditions (i.e., areas
with cool summers and/or a short growing sea-
son) and are projected to receive a larger propor-
tion of cold-season precipitation as rain instead
of snow due to warming while receiving more
precipitation overall. Projections of decreased
regeneration were found mostly where growing
degree days are currently abundant and the con-
tribution of snow is projected to be strongly
reduced at small changes to total precipitation.
These responses were generally stronger end-
century than mid-century and under RCP 8.5
than RCP 4.5. Other studies support the interpre-
tation that intermediate reductions of snow
under a warming climate at cool or high elevation
sites may enhance deep-rooted species such as
big sagebrush as long as sufficient soil moisture
is available and warm-season dry periods are not
too severe which instead could favor cold-season
species, including the invasive annual cheatgrass
(Perfors et al. 2003, Schlaepfer et al. 2012a, Polley
et al. 2013, Flerchinger et al. 2020).

By contrast, the regression-based Shriver2018
model suggested that active restoration manage-
ment may generally become increasingly more
difficult under warming for northern portions of
the Great Basin and the Snake River Plains. The
future projections of the Shriver2018 model were
uniform as expected from model structure and
model purpose. The robust outcomes under cli-
mate scenarios were mostly driven by the model
response to the warming signal that reflected
the high agreement in temperature projections
among GCMs (Appendix S2: Fig. S4; Appendix
S1: Table S4; IPCC 2014), and we did not account
for uncertainty in model parameters. Our

variable selection procedure to summarize model
outcomes did not identify the temperature-
related driving model variable itself but instead a
closely related variable (Appendix S1: Table S7).
This summary suggested a negative relationship
between projected changes in post-fire restora-
tion seeding outcomes and projected increases in
growing degree days with larger projected
decreases for end-century than mid-century and
under RCP 8.5 than RCP 4.5. Climate change
projections with the Shriver2018 model
demonstrated apparent robustness of outcomes
and ease of interpretation; however, levels of
interactions between big sagebrush restoration
outcomes, fire, and invasive annual grasses re-
presented by the model are specific for recent
years across the northern Great Basin and Snake
River Plains. Recent findings suggest that current
levels may reflect a lower estimate of successful
restoration outcome under future climate projec-
tions with an intensified fire-invasive annual
grasses feedback (e.g., Bradley et al. 2016, Coates
et al. 2016). Nevertheless, the future Shriver2018
projections are consistent with previous findings
that big sagebrush restoration seeding is, on
average, more successful at high elevation, cool
sites than at low elevation, warm sites (Davies et
al. 2011, Germino et al. 2018). We interpret these
results in comparison to GISSM which omitted
effects of fire and introduced species, as a model
hypothesis which suggests that the fire-invasive
annual grass feedback loop, as well as associated
land use legacies, may play a dominant role for
future big sagebrush post-fire restoration seeding
success, at least across the northern Great Basin
and Snake River.
Third, evaluating these divergently structured

models has lessons for how to develop long-term
projections for complex ecological processes. We
have employed two substantially different model
types, one process-based model with many

Fig. 7. Interpretation of future model projections: Ability of the selected best-performing predictor variables to
summarize differences in outcomes of GISSM (a–d) and the Shriver2018 models (e–h) between RCP8.5 end-
century and historical conditions for gridcell-specific soils. Dark blue hues indicate a higher density of gridcell
values; the three colored lines represent conditional relationships between x and y where another predictor vari-
able (inset legend) was held constant at its 2.5% (red), 50% (green), and 97.5% quantiles (blue). Note: the two
models were applied across different geographic extents (see Fig. 1).
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parameters and one regression-based model with
few parameters (Fig. 2), to generate long-term
inferences about big sagebrush potential regener-
ation and post-fire restoration seeding success.
While we were able to adequately summarize
the regression-based model and explain future
projections with simple variables, the process-
based model outcomes could not be summarized
to a similar extent, that is, much of the model
outcomes remained unexplained by the sum-
mary. This suggests that the processes and/or the
daily temporal resolution represented by GISSM
may be necessary to appropriately capture the
complex conditions that determine big sagebrush
establishment suitability. However, the richness
of complex model outcomes can represent chal-
lenges for interpretation and communication
(Rastetter 2017, Gramelsberger et al. 2020). Mul-
tiple approaches can be used in combination to
assess suitability of model projections including
evaluating model performance, identifying
sources of uncertainty, estimating transferability
to novel conditions, and comparing agreement in
projections with other models. The performance
of both GISSM and Shriver2018 models has been
evaluated successfully in the primary publica-
tions (Schlaepfer et al. 2014a, Shriver et al. 2018).
As new observations and experiments are
becoming available under specific simulated cli-
mate conditions, our model projections, which
currently represent hypotheses about those sce-
narios, should be more thoroughly evaluated to
augment predictive insights (Mouquet et al.
2015). The models demonstrate the need for care-
fully designed and interpreted approaches when
projecting complex ecological processes, such as
regeneration, and associated restoration efforts.

Lastly, these two models have limitations that
could be addressed to improve long-term projec-
tions of big sagebrush regeneration. An impor-
tant limitation of our study is that both models
assume the availability of sufficient seeds: GISSM
represents potential regeneration in natural
vegetation in the absence of competition from
introduced species and anthropogenic distur-
bances and Shriver2018 represents the restora-
tion addition of seeds following fire in areas with
a generally high cheatgrass prevalence. These
assumptions are “baked” into model applica-
tions, that is, results are not applicable to
situations with a lack of seeds such as after large

fire without restoration seeding (Germino et al.
2018) and after die-off events or in situations
where big sagebrush needs to track suitable habi-
tats that are shifting location faster and over lar-
ger distances due to climate change than big
sagebrush seeds disperse (mostly <30 m;
reviewed by Schlaepfer et al. 2014b). Addition-
ally, models are less applicable when underlying
relationships change that are only represented
implicitly through fitting to observed data. For
instance, a regression-based model would not
represent an intensified cheatgrass-fire cycle
under a warming climate.
Overall, it would be helpful if models clearly

quantify which conditions they are expected to
represent. GISSM currently represents, in explicit
form, abiotic processes affecting regeneration in
undisturbed big sagebrush vegetation while bio-
tic factors are implicitly represented; however, it
may be valuable for model applications that sup-
port land management decision making, particu-
larly under nonstationary climate conditions, to
integrate and expand GISSM into a general vege-
tation model that explicitly represent responses
to fire, invasive annual grasses, and fire-annual
grass interactions as well as relevant general bio-
tic processes affecting big sagebrush regeneration
such as competition or facilitation (DiCristina
and Germino 2006, Hoelzle et al. 2012, McAdoo
et al. 2013, Davidson et al. 2019) such as STEP-
WAT2 (Palmquist et al. 2018). Further useful
model developments could be to explicitly repre-
sent variable seed availability which would
allow for restoration seeding events at different
seeding rates instead of assuming sufficient seeds
in every year as well as to differentiate big
sagebrush subspecies. Important differences in
regeneration have been documented among sub-
species of sagebrush, for example, reviewed by
Schlaepfer et al. (2014b); however, a scarcity of
data has prevented the representation of
subspecies-level differences in regeneration mod-
els (Schlaepfer et al. 2014a). Separately, applica-
bility of the Shriver2018 model could be
increased by expanding the model to represent
areas outside the original study area and under
different climate conditions than those captured
in the original training data. For instance, cheat-
grass and the cheatgrass-fire cycle are currently
important in some, but not all areas of big sage-
brush occurrence. Applying the current
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regression-based model in areas without a large
cheatgrass and fire influence would likely result
in biased outcomes, for instance, habitat in the
Wyoming Basin or at high elevation (Davies and
Bates 2019, Hak and Comer 2020). Additionally,
the next steps in evaluation of GISSM will be to
evaluate each of the submodels representing
each regeneration process to avoid good fits for
wrong reasons (Lorscheid and Meyer 2016);
however, this will require large amounts of addi-
tional observational and experimental data (Pen-
nekamp et al. 2017, Yates et al. 2018, Bouchet
et al. 2019).

Another limitation is that neither model has
been assessed for how well it performs under
novel geographic and/or climate conditions, that
is, transferability (Yates et al. 2018). Due to our
lack of new data to assess transferability, we
instead estimated the area over which the models
were not required to extrapolate from conditions
contained in their respective training datasets
into novel conditions. Based on univariate and
multivariate metrics of extrapolation (Mesgaran
et al. 2014), no univariate/multivariate extrapola-
tion across 30/34% of the study area was required
by GISSM under 1980–2010 conditions and no
extrapolation across 83/95% by Shriver2018
(Appendix S2: Fig. S5-S8; Appendix S1: Table
S5). As expected, areas that required extrapola-
tion increased through time periods and from
RCP 4.5 to RCP 8.5 and those projections should
accordingly be interpreted with care. Neverthe-
less, Renwick et al. (2018) carried out a multi-
model comparison that included GISSM as one
of four independent big sagebrush models. Their
multi-model comparison suggested that out-
comes of the four models including GISSM were
largely in agreement and shared similar
responses to changes in temperature and precipi-
tation (Renwick et al. 2018); this supports the
credibility of the regeneration model used here.
Furthermore, the future projections of the regen-
eration response by GISSM agree well with gen-
eral insights from species distribution model
(SDM) projections of adult big sagebrush (Sch-
laepfer et al. 2012c, Still and Richardson 2015,
and summarized by Zimmer et al. 2021). Despite
the fact the SDM by Still and Richardson (2015)
represents the Wyoming big sagebrush sub-
species while the ensemble SDMs by Schlaepfer
et al. (2012c) represented big sagebrush

subspecies combined, they agree with each other
and with GISSM in projected decreases in south-
ern areas across Nevada, Utah, and New Mexico
as well as low elevation areas along the Snake
River and Columbia River. These models also
agree well in projected areas of no change or
increases including southwestern Wyoming, ele-
vated areas in central and eastern Colorado, cen-
tral and northern Nevada, and others. However,
the Wyoming big sagebrush SDM and the
ensemble SDMs disagreed in their projections in
eastern and northern Wyoming and eastern
Montana where the Wyoming big sagebrush
SDM projected widespread decreases while the
ensemble SDM projected more frequently no
change in the distribution (Schlaepfer et al.
2012c, Still and Richardson 2015); GISSM pro-
jected mostly small positive to small negative
changes in regeneration potential for those areas
mostly agreeing with the general SDMs that
combined all subspecies as GISSM (Fig. 3). The
Shriver2018 model projected decreases through-
out in contrast to the SDM projections; however,
this should not be interpreted as model disagree-
ment because the Shriver2018 model represents
restoration success while the SDM represents cli-
matical suitability of big sagebrush distribution.
While the process-based GISSM and regression-
based Shriver2018 models can be improved, they
both remain valuable tools to increase our under-
standing of contemporary and future big sage-
brush regeneration outcomes. Our results,
particularly the contrast of models, have lessons
for how to approach developing long-term pro-
jections of a complex ecological process such as
regeneration.

CONCLUSIONS

Regeneration is one aspect among many that
contribute to the continuity of big sagebrush and
the vegetation types that are dominated by this
species. Successful establishment from seed, the
only natural regeneration mode in big sagebrush
(Shultz 2006), may become particularly relevant
during transient, highly variable, or nonstation-
ary conditions (Jackson et al. 2009).
This study represents the best available esti-

mates of projected future probabilities of regen-
eration potential under natural conditions and of
restoration seeding outcomes following fire for

 v www.esajournals.org 19 August 2021 v Volume 12(8) v Article e03695

SCHLAEPFER ET AL.



big sagebrush. Our results imply general future
trajectories for big sagebrush regeneration and
identify the critical factors that shape those tra-
jectories. In particular, divergent projections
between the two models suggest that, for much
of the region, big sagebrush regeneration will
continue to be feasible, despite a warming cli-
mate, under natural conditions in unburned,
intact plant communities. In the northern Great
Basin and Snake River Plains, big sagebrush per-
sistence will be influenced more by fire-invasive
annual grass interactions (that itself is affected by
climate change) than directly by 21st century cli-
mate conditions. Future research to confirm these
results will need to include model transferability
studies as well as heated common garden experi-
ments with inclusion and exclusion of cheat-
grass. Our results corroborate what others have
found, that is, that sustaining big sagebrush in
heavily invaded areas throughout the 21st cen-
tury hinges on solving the fire-invasive annual
grass problem. However, our results additionally
suggest that solutions may be found by promot-
ing conditions similar to those found in undis-
turbed environments.

For natural resource managers, uncertainty is
a major challenge related to climate change, and
our study assessed that challenge for big sage-
brush regeneration. Our observation of relatively
high agreement among GCMs indicates that vari-
ation among long-term future climate projections
does not translate into high uncertainty about
big sagebrush regeneration. However, we did
observe substantial geographic variation in long-
term regeneration trajectories, and these have
potentially important management implications.
Specifically, the central and northern areas of the
big sagebrush region were projected to climati-
cally sustain frequent regeneration in the long
term, whereas marginal and mostly southern
areas were projected to experience less frequent
regeneration (consistent with other studies, e.g.,
Renwick et al. 2018).

While the big sagebrush restoration challenge
is multidimensional, valuable insights for
resource management may be gained by our
comparison, particularly for post-fire restoration
seeding in the northern Great Basin and Snake
River Plain. Our results suggest that restoration
practices which create conditions similar to
uninvaded, unburned natural big sagebrush

vegetation might be successful under 21st cen-
tury climate conditions. Big sagebrush seeds are
commonly available in most years (reviewed by
Schlaepfer et al. 2014b), whereas in post-fire
restoration seeds are predominantly available
for one year. If this is relevant, then one ques-
tion to explore further could be whether post-
fire restoration seeding in multiple years in the
hotter conditions expected in the future might
increase big sagebrush regeneration outcomes
(Shriver et al. 2018). Additional processes that
are mostly absent in burned stands, including
facilitation by adult shrubs, shade effects, and
mycorrhizal interactions, may contribute to big
sagebrush regeneration in natural vegetation
(e.g., Huber-Sannwald and Pyke 2005, Hulvey et
al. 2017, Hovland et al. 2019) and might be over-
come by directly planting big sagebrush seed-
lings (Davidson et al. 2019, Davies et al. 2020).
Our study suggested general patterns and did
not examine exactly which conditions of natural
vegetation need to be matched for big sagebrush
restoration to be successful under 21st century
climate; these remain to be identified by future
work.
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