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Abstract

Oceanic fronts, the junction between water masses, are ubiquitous in tigéobal
ocean. It ha been suggested that biological productivity and the abundance of
marine species are correlated with frontal activity. Ocean warming due to
climate change may leado long-term changes in frontal activity, due to, for
example, changes in regional and local current systems. In this study, the
variability and trends of thermal fronts in two marine hotspots near Australia
were investigated using two frontal detection nethods and two different satellite
sea surface temperature datasets. Siand eightday average frontal maps were
generated to make a visual comparison between the frontal detection methods
and to compute severaparameters of frontal activity spanning 26 years (1993
2018). Theseparametersincluded frontal density (FD) and monthly and annual
composites of frontal probability (probability of frontal encounter, PFE). Visually,
fronts detected by the two methods clearly separate SST populations in frontal
maps. The Canny gradienbased method detected more fronts than the single
image edge detection method, while the latter method performed better in
processing data in areas of poor coverage. The interannual trendskidand PFE
all follow gently increasing trends in both Australian hotspots, but some of the
increasing trends are not statistically significant. In addition, bothFD and PFE
showed significant seasonal cycles, being higher austral summer months and
lower in winter months, and frontal activity is more prevalent in coastal areas
and lower latitudes. The frontal maps generated in this studywhenintegrated
with other oceanographicdata, can provide further insight into the structure and
processesof thermal fronts. The overall trends andseasonal cycles can be
important for understanding the impact of ocean warming on marine

ecosystens and biodiversity.
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Chapter 1 Introduction

1.1.Oceanic fronts
1.1.1. Definition of fronts

Oceanic fronts are defined as sharp gradients at tienction of two adjacent
water masses, which usually have different physical, biochemical and optical
properties (Belkin 2009). Fronts are typically regions of intensified mixing,
increased turbulence and convection (Roden 1976). In thglobal ocean fronts
occur across different spatial and temporal scales. This is due to many factors
such as topography (Wolanski & Hamner 1988) and various atmospheric and
oceanic conditions(Wai & Stage 1989; Belkin et al. 2007). As a result, there are
many types of fontal features as identified in Belkin (2002), including midshelf
fronts, shelfslope fronts, equatorial upwelling fronts and boundary current
fronts. The length scale of fronts can be several kilometres (fronts near rivers
and estuaries) to thousands okilometres (ocean current fronts) (Joseph 2014)
Across time scales, fronts can last for a few minutes or be seasonal features
(Joseph 2017) The boundaries of fronts sometimes can be easily observed

visually from a ship without any instruments.
1.1.2. Ecological role s of fronts

Mixing of water masses may occur near fronts regardless of whether the
water masses are converging or diverging. Water movement and mixing can
increase physical and biological activity near fronts through the transfer of
nutrients or by creating suitable physical conditions (Sato et al. 2018). This
activity can further influence local marine ecosystems (Brandini et al. 2018). The
presence of fronts can change the composition of the plankton community and
associated biogeochemical fluxed @ndry et al. 2012; Stukel et al. 2017). Fronts
can also drive productivity flows in ecosystems and affect the distribution of
species (Woodson & Litvin 2015) such as bluefin tuna=edler & Bernard 1987,
Royer et al. 2004 Xu et al. 2017. By driving nutrients through alternate trophic
pathways, fronts can also increase total ecosystem biomass and enhance
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fisheries production (Woodson & Litvin 2015).Oceanic fronts are abundant in
upwelling systems (Mauzole et al. 2020) and play an important role in predat-
prey interactions and energy transfer through food webs (Satet al. 2018) and
increase the abundance of forage fish and top predators (Snyder et al. 201IR).
the Southern Ocean, fronts teongly influence exchanges among the ocean,
atmosphere and cryophere, and are of fundamental importance to the climate

system (Williams et al. 2007;Sallée et al. 2008;Chapman et al. 2020).

1.1.3. Factors leading to the formation of fronts

Several factors are responsible for the formation of fronts.Firstly,
topography (Wolanski & Hammer 1988)can leadto the development of fronts
in both the open ocean and near coasts. In the open ocean, topographic features
such as seamounts can lead to é¢hformation of vertical fronts and eddies. The
influence of topography is stronger near coasts due to complex bathymetric
features(Levine & White 1983;Wolanski & Hamner 1988;Wall et al. 2008)and
the hydrodynamic influence of estuarine and riverine flux (Fischer et al. 2017).
Consequently, coastal fronts are more complex and variable than opecean
fronts, especially when interacting with tides. Another example is the influence
of the continental shelf (Holladay & O'Brien 1975) and the shelf break (Condie
1993).

Prevailing atmospheric and oceanic conditions are also important factors in
the formation of fronts. Spatial variation ofwind stressat the sea surface drives
the horizontal movement of surface water, leading to either convergence or
divergence of different water massesHeath 1972). Upwelling and downwelling
can lead to the movement of water from depth to the surface and from the
surface to depth, respectively. As a result, fronts nehave a vertical expression
at depth depending on the strength of the phenomenafink 1987; Letelier et al.
2009). Furthermore, bathymetric, atmospheric and oceanic features can drive
the spatial variability of the entire frontal structure (Chapman et al 2020).

Chapman et al. (2020) noted that regionally localised southward shifts of the
12



Antarctic Circumpolar Current fronts are driven by changes in winds, leading to

changes in local frontal activity and warming in the Southern Ocean.

1.2. Fronts and climate change

It has been suggested that climate change has influenced the formation of
fronts in the last few years, leading to changes in theprobability , density and
distribution of frontal activity. Consequently, such changes will affect the
function and diversity of the local ecosystems that are dependent on frontal

activity .

Several studies noted that there are relationships between changes in
atmospheric forcing due to largescale climate modessuch as El Nifio/La Nifia
and changes in local frontal activity $allée et al. 2008; Kim & Orsi 2014;
Chapman et al. 2020). Many studies have focused on letggm trends of frontal
activity. However, there is lack of consensus in the literature regarding ése
trends under scenarios warming seas and climate change. Several trends have
been suggested in recent years. Kahru et al. (2012) looked at frontal trends in the
California Current System (CCS) and suggested a letegm increasing trend in
frontal frequency in the CCS region. The findings of Kahru et al. (2012) are
derived from the study of 29year (1981-2009) sea surface temperature and 14
on the influence of warm anomalies beveen 2014 and 2016 in the NorthEast
Pacific. It was suggested that the frequency of fronts decreased significantly as a
result of warm anomalies (Kahru et al. 2018). Whether this decline represents
the beginning of a new longterm decreasing trend or isjust an interruption in
the long-term increasing trend previously suggested by Kahru et al. (2012)
remains an open question (Kahru et al. 2018). Oerder et al. (2018)sofound an
increasing trend of frontal frequency near the coast of Central Chile.
Furthermore, Obenour (2013) hadsuggestedhat the long-term trends of frontal
activity as a result of climate change was not uniform in thglobal ocean Overall,

the global probability of fronts has increased linearly at a rate of 0.25% per
13



decade over 30 yess (Obenour 2013).

Ocean warming due to climate change is nalistributed evenly acrossthe
global ocean.Marine heatwaves (MHWs)have also become longer and more
frequent over the past decades (Oliver et al. 20)&ffecting selected regions of
the global oceanintenseregional warming can be manifested irmarine hotspots,
or areas that are warming faster than 90% of the global oceaiHobday & Pecl
2014). In these hotspots, the impacts of ocean warming on ecosystems will likely
be observed earlier.For example, Bakun (1990) proposed that global warming
would lead to an intensification of coastal upwelling circulation by amplifying
alongshore winds due to increased onshore-offshore atmosphericpressure
gradients. This intensification will then lead to an enhancenent in frontal
probability (Obenour 2013), which will likely occur earlier in marine hotspots
than other areas.Additional frontal studies over theseregions are important to
resolve the previous discrepancies in findings anadan provide knowledge to
enableresource managers to adapt to the impacts aflobal ocean warming and

intensive MHWSs.

1.3. Detecting oceanic fronts

Remotely sensed imagery is widely used to find oceanic fronts. Most studies
use sea surface temperature (SST) andhlorophyll-a concentrations Chl)
derived from satellite radiance values. Several methods have been proposed to
extract frontal information from satellite imagery, including a variety of edge
detection algorithms. These algorithms range from simple edgeperators for
characterising horizontal gradient of a field Canny 1986;Sobel & Feldman 1973;
Prewitt 1970) to more sophisticated algorithms such as clusteshade analysis
(Holyer & Peckinpaugh 1989), histogram analysis (Cayula & Cornillon 1992;
Saraceno &al. 2005), entropy analysis based on the Jens&hannon divergence

(Vaquezet al. 1999), and semivariogram analysis (Diehl et al. 2002).

The two commonly-used methods for detecting thermal or Chl fronts are the

14



gradient-based method and histogram analsis. Among the edge detection
algorithms developed so far, the Canny gradiestased method is one of the

strictest edge defining methods (Canny 1986). The strictness in edge detection

and simplicity of process for implementation make this method popular choice

for detecting marine fronts (Etnoyer et al. 2006; Wall et al. 2008; E1 OEAAT O A
¢ 1 P.The histogram analysis developed by Cayula and Cornillon (1992) is
originally designed for detecting thermal fronts in SST images. Considering its

ability of handling of cloud contamination in the original SST data (Cayula &
Cornillon 1992), this method has an irreplaceable position in detecting thermal

fronts (Hickox et al. 2000; Wall et al. 2008). Both ahese methods were used

and compared in this study.

1.4. Study aims

Given the varying findings with regards to trends in frontal activity in the
global ocean under changing climate conditions, there is an increasing need to
verify frontal trends, particularly in areas where ocean warming due to
anthropogenic climate change has had a profound impact. To this end, the aim
of this research is to detect marine fronts in SST images of marine hotspot
regions near Australia using two independent edge detection algorithms (the
adaptive Canny(1986) gradient-based algrithm and the Cayula and Cornillon
(1992) single image edge detectingSIED algorithm) and two SST datasets to

further analyse and verify trends in frontal activity.
This study set out to

1) test and compare the performance of two frontaldetection

algorithms on two SST datasets of two different spatial resolutions

2) determine whether fronts in two hotspot regions have changed in
the probability over the course of a recent period of ocean warming

due to climate change.
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Chapter 2 Data and methods
2.1. Study regions

This research mainly focuses on frontal activity in global marine hotspot
regions, identified by Hobday and Pecl (204). Hobday and Pecl (203)
calculated the linear trend in SST for each X 1 pixel over 50 years (19561999)
and used pixels with a high absolute temperature increase (highest 10%) to
identify warming areas. Those warming areas larger than 25 square degrees

were defined as hotspot regions (Hobday & Pecl 2d@).
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Specifically, this study examines two hotspot regions around Australia,
Southeast Australia (SE) (Regn 1) and Southwest Australia (SW) (Region 2h
Figure 2.1 (Hobday & Pecl 204, Figure 1c) The study regions are represented
as two rectangular areas gee Figure 2.2) that encompass the entire hotspot
identified in Hobday and Pecl (20%). The SE study rgion was defined by a
rectangular area with the upperleft corner at 25°S, 146°E and the lowerright
corner at 43°S, 161°E (seeFigure 2.2). This region extends about 950 km into

the Tasman Sea from the East Coast of Australia, from Fraser Island to Hobart.
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The SW study region was defined by a rectangular area with the uppkaft
corner at 2155' S, 88%52' E and the lowerright corner at 4322' S, 11729' E (see
Figure 2.2). This region extends about 2700 km southwest into the Indian Ocean
from the west coast of Australia, from North West Cape to Albany. Both regions
are affected by complex oceanographic conditions such as stroogeancurrents,
wind and freshwater inputs along the coasts, resulting in intense and complex

frontal activity .
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2.2. Satellite Data

In this study, we used two satellite SST products to generafeontal maps. One
SST produci(AustralE Aldtegrated Marine Observing SysterfiMOY 2019) with

a high spatial resolution (1.1 km x 1.1 km) was obtained by IMOS from the
National Oceanic and Atmospheric AdministrationNJOAA Advanced Very High
Resolution Radiometer (AVHRR) on all available N®A Polarorbiting

Operational Environmental Satellites (POES). It is a satellite SST product

18
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detected only at the surface of the ocean (SSKin product), available onthe
Australian Ocean Data Network (AODN). Each grid cell of this product contains

the 6-day average of all the highest available quality SST data that overlaps with

that cell, weighted by the area of overlapAnother SST productOcean Biology
Processing ®up [OBPG 2015) with a 4x4 km spatial resolution was obtained

from the NASA EOSDIS Physical Oceanography Distributed Active Archive Center
jo/8s! ! #Q AOI I . 13180 -1TAAOAGA 2A01T 10
(MODIS) on the Agqua satellite. It is an eighttay average SSEkin product (see

Table 2.1). Both of the two products were dayime SST datageeTable 2.1).

For each study region, there are approximately 60 AVHRR SST images and
46 MODIS images for each year. In total, for each study region, used 1538
AVHRR SST images over 1998918 and 736 MODIS SST images over 202818
to detect fronts and analyse the trend in local frontal probability. SST datasets
collected by two separate sensors cover different time periods and have different
spatial resolutions. This not only helps to generate and analyse trends over
different time periods, but also facilitates comparison and croswalidation

across algorithms and datasets.

Two edge detection algorithms were applied to each of the two SST datasets.
The adaptive Canny method was applied to all the AVHRR and MODIS SST images
of the SE and SW study regions. The Cayula and Cornillon SIED method was
mainly used to detect fronts for the SE study region from the AVHRR SST images
(seeTable 2.1).
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Sea Surface Advanced Very High - Moderate Resolution
Tempera ture Resolution Radiometer Imaging Spectrometer
(SST) Data (AVHRR) (MODIS)
3IDPAOEAIT Cp &plkm T4 km

$A0A DPOI AgAANOAOA GBHIAK YA ABDOA OA EBHIAL

Data range 1993 -2018 2003 -2018
Source https://portal.aodn.org.au/  https://doi.org/10.5067/
search MODSA8D4D4

2.3. Edge Detection Algorithms

The transition zone between two water masses with a large temperature
difference can usually be observed with the naked eye in SST images. However,
this process can be automated, and approaches such as edge detection
algorithms allow for systematic extracton of oceanographic frontal features
within the imagery.

AEA O#ATTU 1 AOET Ahd AAOAIT T DA Abaséd # A1l
algorithm. It defines edges by looking for local maxima of the gradient of a field,
such as an SST field. The method detects han#al gradients and produces the
magnitude of the gradient as a continuous field which makes it simple to
understand and use (Belkin&/ 8 2 AEI 1 U ¢nmnwgs8 ! OAOO 1 &
a variety of other edge detection algorithms (Shrivaksha& Chandraselar 2012)
found that the Canny method performs better under noise. Therefore, this

method was selected as one of the algorithms we used in this study. Due to its

20


https://portal.aodn.org.au/search
https://portal.aodn.org.au/search
https://doi.org/10.5067/MODSA-8D4D4
https://doi.org/10.5067/MODSA-8D4D4

simplicity, we use this method to identify and examine fronts in all of the SST

satellite images.

In addition to the Canny method, the populatiorbased histogram algorithm
developed by Cayula and Cornillon (1992) has been commonly applied to many
marine surface signals such as SST and Chl to detect oceanographic fronts (SST:
Cayula & Cornillon 1992 199%; Ullman & Cornillon 1999, 2000, 2001; Belkin &
Cornillon 2004; Chl: Stegmann & Ullman 2004; Bontempi & Yoder 2004). This
method creates histograms from small independent windows of an image and
examines whether there is a bimodal distribution to idatify two water masses
of different oceanographic characteristics, e.g., temperature. The original single
image edge detection (SIED) histogram analysis was designed for detecting
fronts in SST images. Several comparative studies (Cayula et al. 1991; Ulina
Cornillon 2000) between the performance of the Cayula and Cornillo(l992)
SIED method and several other automated SSiEtection methods found that
SIED performed as well as or better than all of these methods. Due to the superior
performance and wideapplication of the Cayula and Cornillon SIED method, it
was selected and used in this study. However, because of the computationally
intensive nature of the algorithm and the highresolution SST data used, there
was only enough time to process data usingné SIED method or one of our study

regions (the SE study region).

Parameters in both algorithms were modified to optimise their
performancein processing the SST data he description of these two algorithms

and their specific modifications are provided lelow.
2.3.1. Adaptive Canny (1986) Gradient -based Algorithm

The edge detection of the Canny algorithm contains five steps. In the first
step, the image is smoothed with a-P Gaussian filter. The basic principle of all
edge detection algorithms is to define an ege by detecting the difference
between two pixels. Noise in raw satellitederived SST data can easily affect the

detection. The purpose of smoothing is to minimise false detection due to the
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influence of obvious noise (e.gs edges, processing errors, etg. A 2D isotropic

Gaussian filter kernel of size ¢ E p ¢ E p hasthe form:

P

"BE —A QD (1)

where 3 E C iA)As the standard deviation of the Gaussian filter. In this study, a

sigma of O N © Owas used, corresponding to ax  x kernel box(E o).

Second, the edge gradient of each pixel was computed. An edgennS&T
image may point in many different directions.The Canny algorithm usesac o
pixel window to decompose these directions. In ac o pixel window, the
direction of an edge can only go in four directions: horizontal, vertical and
diagonal. In this way, the edge will be showas its irregular shape when dlthe
windows compose. The algorithm also computes the strength and direction of
the edge gradient, which is assigned to the centre pixel of the window. The

computation is given by
Strength: ' O 0 (2
g AOAGO (3)

where "O is the first derivative of the gradient in the horizontal direction
and OEO OEA E£EOOO AAOEOAOEOA 1T £ OEA COA
The third stepis known as nonrmaximum suppression Eachedge extracted
from the gradient valueis usually wide because it usually contains two or more
pixels in width. Nonmaximum suppression helpsto thin the edges by
suppressing all the values of edge gradients to the local maximamiltiple -pixel-
width edge is suppressed to only on@ixel width . This is achievd by comparing
the edge gradient strength of a pixel with the edge gradient strength of other
pixels in both the positive and negative gradients direction.
Fourth, AEOAO ADPRIAWEN ©i T IGI0OBPOAOGOET T h OAIl A
AAT OADOAOGAT O AGAMMMAOARGCAIB (TR OAOh OEAO,
EAO AOA AAOOAA Au TT1TEOA8 511 EEA OEA O
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Because the values of the two thresholds are partly dependent on the input
image, it may not be appropriate to uniformly set two fixed thresholds. In this
study, the Canny method was implemented usingMATALB™ software
(Mathworks, Inc.) to generate adaptive double thresholds for each SST image.
Before performing the edge detection, the function first generates a gradient
magnitude histogram for an image. The upper threshold is defined as the t70
percentile of this histogram, then the multiplication of theupper threshold and
a fixed threshold ratio (0.4 in this study) is regarded as the lower threshold. This
approach is a variant of the Otsu threshold selection method (Otsu 1979; Huo et
al. 2010), which is based on image binarisation. In this study, adapévdouble
thresholds generated in this way have been appropriately adjusted to make

detected edges a more realistic representation of thermal front lines.
2.3.2. Cayula and Cornillon (1992) SIED Method

The basic principle of the Cayula and CornilloSIED algorithm is to define
edges as the pixel chain that separate two populations of image pixels that follow
a bimodal histogram distribution (Wall et al. 2008). The strength of an edge is
defined as the difference between the two modes of the bimodaistribution. The
distance betweenthe two modes can also be used to define the strength of an
edge due to the positive relationship between the distance and the difference in
the bimodal distribution. Likewise, in oceanographic research, the SIED

algorithm defines thermal fronts as the thin regionsthat separate two water
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populations with relatively uniform temperature (Lekouara 2013).

The Cayula and CornillorSIED algorithm applied in this study is basically
similar to the original SIED algorithm using default parameter settings (Roberts
et al. 2010). As in the Canny method, it is essential to minimise the influence of
noise before edge detection. The SIED algthm achieves this with a 2D median
filter which smooths an image with a sliding square window (filter window) of a
specific size. In such a window, the value of the central pixel is replaced by the
median value of the values of all the pixels in the a@nt window. The sliding
window advances across the image one pixel at a time. In this study, we median
fillered the SST images using the default 3 x 3 moving window. Second, the
histogram algorithm is applied. The histogram algorithm finds a bimodal
histogram distribution within a moving square window (histogram window) of
a specific size. The original SIED algorithm uses a window size of 32 x 32 pixels,
and the window is set to advance across 16 pixels at one time. The algorithm
checks the window for a limodal distribution in the pixel values (SST) every time
the window moves. If there is a bimodal distribution in the current window, the
mean values of the two populations (two water masses) will be computed. The
difference between the mean values is compad with a given detection
threshold. If the difference is larger than this threshold, the algorithm will
conclude that there is an edge in the current window and determine the optimal
value (SST) that separates the two populations. In this study, the deteon
threshold was set to 0.3, which indicates a minimum temperature difference of

0.3 C.

Third, a spatial cohesion algorithm is applied in order to further verify
whether the pixels of the two populations are sufficiently spatially separated
and remowe noise arising from clouds and artefacts processed by satellite
sensors. The presence of the two populations is initially verified by the operation
above. Ideally, pixels of the same population should distribute compactly near a
fixed location in the window if there is an edge. However, noisy data (i.e. clouds
and satellite sensors processing artefacts) may also form populations in some

histogram windows. This algorithm consists of two parts. There is a cohesion
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coefficient in each part to judge the levebf cohesion of each of the histogram
windows. The first part checks the cohesion of each population by itself.
According to Cayula and Cornillon (1992), the optimal cohesion coefficients for
a 32 x 32 histogram window is 0.90. The second part checks thehmsion of both
populations at the same time. For this part, the optimal cohesion coefficient for
a 32 x 32 histogram window given by Cayula and Cornillon (1992) is 0.92. In
each part, cohesion values of the histogram windows above the cohesion
coefficient are regarded as high cohesion values and represent two well
separated populations. Those windows with cohesion values below the
coefficient will be filtered out because they are regarded as noisy windows. In
this study, we used the same optimal cohesion efficients (0.90, 0.92) to match
our 32 x 32 histogram window. For comparing with the Canny method, fronts

were also thinned to the width of one pixel.

The Cayula and Cornillon (1992) SIED Algorithm in this study was applied
by using the Marine GeospatialEcology Tools (MGET) packag€ayula &
Cornillon 1992; Roberts et al. 2010) in ArcGISHnvironmental Systems Research
Institute/ESRI™).

2.4. Frontal Analysis

Each frontal map contains many pixels, including those with fronts and
those without fronts. For each map, frontal density (FD) was calculated #se

number of frontal pixels over the total number of image pixels.

Secondly, for the analysis of frontal probability, we calculated the
probability of frontal encounter (PFE), defined in Breaker et al. (2005). In
different frontal maps, pixels were regarded as either frontal pixels or a nen
frontal pixel. Within a certain number offrontal maps, we took the number of
times a particular pixel was recognised as a frontal pixel bgn edge detection
algorithm and divided this value by the number of times that the pixel was a nen

frontal pixel, yielding a PFE value. We produced around 60 AVHRBntal maps
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and 46 MODISrontal maps for each year. Therefore, an annual PFE image was
produced by using all of the 60 AVHRRontal maps or 46 MODISrontal maps.
Also, a monthly PFE image was produced by using 5 (=60/12 months) AVHRR
Ei ACAO TO 1t jBtroe¥pg I 1TTOEOCQ -/%$)3 EI ACA
also taken to calculate corresponohg annual and monthly PFE values.

Finally, we applied a modified ManrKendall (MMK) test to all of our time
series to statistically assess if thergvasa monotonic trend in the frontal density
and probability over time. The MMK test used in this study is based on the
original Mann-Kendall test with an addition of the Yue and Wang (2004) variance
correction approach, which addresses the issue of serial elation in trend
AT AT UOEO8 4EEO DPAOO xAO AAEEAOGAARAU O
DAAEACA Oi 1 AEEAEAATI ES | 0OAOAEAI OOE 0O /18" 0
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Chapter 3 Results

3.1. Analysis of SST data

To accurately assess the performance of the frontal detection algorithms, it
was necessary to evaluate the data quality of the two datasets (AVHRR/MODIS).
This was achieved by computing the proportion of pixels with valid SST data in
each of the SST images for each year. The test results of each dataset over each
study region are shownin Figure 3.1, in the form of annual mean data quality.
Data quality can reflect the reliability of subsequent results to a certain extent.
We set the standard at 0.5 to distinguish between high (>0.5) and low (<0.5)
data-quality years. The results of thehigh-quality data years are considered
highly reliable in the subsequent sections of the results. Figure 3.2 shows the
comparison between high and low-quality AVHRR SST images. It can be seen in
the image of 2001 that there is a large blank area due to ssing data.lt is not
possible for frontal detection algorithms to detect fronts in areas with missing
data. Therefore, according to the description of FD and PFE above, fewer
detected fronts due to missing data will result in lower FD and PFE (see section

2.4).

According to the test results ¢ee Figure 3.1a and 3.1b), for both study
regions, there is an apparent poor data quality period (data quality below 0.5)
between 2001 and 2005 for the AVHRR data. Although the data quality of the
AVHRR data irR003 shows a value above 0.5, poor data coverage in 2001, 2002,
2004 and 2005 will have to be treated with caution when interpreting the
remaining results. In addition, poor data coverage was evident in the SW study
region in 1993, 1994 and 2017 $eeFigure 3.1b).These years of lowguality data
will lead to a significantly low FD and PFE value€ompared with the AVHRR
data, the assessment of the MODIS data qualitgéeFigure 3.1c and3.1d) show
absolutely higher data quality (over 0.8 data quality) durig the whole time
period between 2003 and 2018.
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The difference between the two algorithms is also redicted in their PFE

trends. Since the SIED method is applied only to the AVHRR SST data over the SE

study region, the annual PFE data of the SE study region is showrFigure 3.7.

In Figure 3.7, we mainly focus on the difference between the two methods.

Trends will be discussed in further detail in Section 3.3. IRigure 3.7, firstly, the

overall PFE trends of the two methods are similar. But the annual PFE data based

on the SIED method is significantly lower than the Canny PFE data. This coincides

with the difference in the number of detected frontdbetween the two algorithms

as mentioned in the previous paragraphln addition, the difference in algorithm

performance when there are areas of missing data is clearly illustrated Figure

3.7. Based on SectioB.1, we know that the data quality between 2001 and 2005

is significantly lower. In this case, the PFE data based on the Canny method

during this period is apparently lower than in other years. However, the

difference in the range of the PFE values calaied using the SIED algorithm

between 2001 and 2005 ismuch less than using the Canny methodThis
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indicates that the effect of lowquality SST data on the performance of the SIED
method is less than compared with the Canny method. For comparison, the
MODIS PFE derived by the Canny method is also shownrFigure 3.7. Regardless
of the potential issues with data coverage between 2001 and 2005, the PFE
values from both the MODIS and AVHRR range frdr055to 0.075 and average
0.064.
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