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Abstract 

Oceanic fronts, the junction between water masses, are ubiquitous in the global 

ocean. It has been suggested that biological productivity and the abundance of 

marine species are correlated with frontal activity. Ocean warming due to 

climate change may lead to long-term changes in frontal activity, due to, for 

example, changes in regional and local current systems. In this study, the 

variability and trends of thermal fronts in two marine hotspots near Australia 

were investigated using two frontal detection methods and two different satellite 

sea surface temperature datasets. Six- and eight-day average frontal maps were 

generated to make a visual comparison between the frontal detection methods 

and to compute several parameters of frontal activity spanning 26 years (1993-

2018). These parameters included frontal density (FD) and monthly and annual 

composites of frontal probability (probability of frontal encounter, PFE). Visually, 

fronts detected by the two methods clearly separate SST populations in frontal 

maps. The Canny gradient-based method detected more fronts than the single 

image edge detection method, while the latter method performed better in 

processing data in areas of poor coverage. The interannual trends of FD and PFE 

all follow gently increasing trends in both Australian hotspots, but some of the 

increasing trends are not statistically significant. In addition, both FD and PFE 

showed significant seasonal cycles, being higher in austral summer months and 

lower in winter months, and frontal activity is more prevalent in coastal areas 

and lower latitudes. The frontal maps generated in this study, when integrated 

with other oceanographic data, can provide further insight into the structure and 

processes of thermal fronts. The overall trends and seasonal cycles can be 

important for understanding the impact of ocean warming on marine 

ecosystems and biodiversity.  
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Chapter 1  Introduction 

1.1. Oceanic fronts 

1.1.1. Definition of fronts 

Oceanic fronts are defined as sharp gradients at the junction of two adjacent 

water masses, which usually have different physical, biochemical and optical 

properties (Belkin 2009). Fronts are typically regions of intensified mixing, 

increased turbulence and convection (Roden 1976). In the global ocean, fronts 

occur across different spatial and temporal scales. This is due to many factors 

such as topography (Wolanski & Hamner 1988) and various atmospheric and 

oceanic conditions (Wai & Stage 1989; Belkin et al. 2007). As a result, there are 

many types of frontal features as identified in Belkin (2002), including mid-shelf 

fronts, shelf-slope fronts, equatorial upwelling fronts and boundary current 

fronts. The length scale of fronts can be several kilometres (fronts near rivers 

and estuaries) to thousands of kilometres (ocean current fronts) (Joseph 2014). 

Across time scales, fronts can last for a few minutes or be seasonal features 

(Joseph 2017). The boundaries of fronts sometimes can be easily observed 

visually from a ship without any instruments.  

1.1.2. Ecological roles of fronts 

Mixing of water masses may occur near fronts regardless of whether the 

water masses are converging or diverging. Water movement and mixing can 

increase physical and biological activity near fronts through the transfer of 

nutrients or by creating suitable physical conditions (Sato et al. 2018). This 

activity can further influence local marine ecosystems (Brandini et al. 2018). The 

presence of fronts can change the composition of the plankton community and 

associated biogeochemical fluxes (Landry et al. 2012; Stukel et al. 2017). Fronts 

can also drive productivity flows in ecosystems and affect the distribution of 

species (Woodson & Litvin 2015) such as bluefin tuna (Fiedler & Bernard 1987; 

Royer et al. 2004; Xu et al. 2017). By driving nutrients through alternate trophic 

pathways, fronts can also increase total ecosystem biomass and enhance 
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fisheries production (Woodson & Litvin 2015). Oceanic fronts are abundant in 

upwelling systems (Mauzole et al. 2020) and play an important role in predator-

prey interactions and energy transfer through food webs (Sato et al. 2018) and 

increase the abundance of forage fish and top predators (Snyder et al. 2017). In 

the Southern Ocean, fronts strongly influence exchanges among the ocean, 

atmosphere and cryosphere, and are of fundamental importance to the climate 

system (Williams et al. 2007; Sallée et al. 2008; Chapman et al. 2020). 

 

1.1.3. Factors leading to the formation of fronts 

Several factors are responsible for the formation of fronts. Firstly, 

topography (Wolanski & Hammer 1988) can lead to the development of fronts 

in both the open ocean and near coasts. In the open ocean, topographic features 

such as seamounts can lead to the formation of vertical fronts and eddies. The 

influence of topography is stronger near coasts due to complex bathymetric 

features (Levine & White 1983; Wolanski & Hamner 1988; Wall et al. 2008) and 

the hydrodynamic influence of estuarine and riverine flux (Fischer et al. 2017). 

Consequently, coastal fronts are more complex and variable than open-ocean 

fronts, especially when interacting with tides. Another example is the influence 

of the continental shelf (Holladay & O'Brien 1975) and the shelf break (Condie 

1993).  

Prevailing atmospheric and oceanic conditions are also important factors in 

the formation of fronts. Spatial variation of wind stress at the sea surface drives 

the horizontal movement of surface water, leading to either convergence or 

divergence of different water masses (Heath 1972). Upwelling and downwelling 

can lead to the movement of water from depth to the surface and from the 

surface to depth, respectively. As a result, fronts can have a vertical expression 

at depth depending on the strength of the phenomena (Brink 1987; Letelier et al. 

2009). Furthermore, bathymetric, atmospheric and oceanic features can drive 

the spatial variability of the entire frontal structure (Chapman et al. 2020). 

Chapman et al. (2020) noted that regionally localised southward shifts of the 
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Antarctic Circumpolar Current fronts are driven by changes in winds, leading to 

changes in local frontal activity and warming in the Southern Ocean. 

 

1.2. Fronts and climate change  

It has been suggested that climate change has influenced the formation of 

fronts in the last few years, leading to changes in their probability, density and 

distribution of frontal activity. Consequently, such changes will affect the 

function and diversity of the local ecosystems that are dependent on frontal 

activity.  

Several studies noted that there are relationships between changes in 

atmospheric forcing due to large-scale climate modes such as El Niño/La Niña 

and changes in local frontal activity (Sallée et al. 2008; Kim & Orsi 2014; 

Chapman et al. 2020). Many studies have focused on long-term trends of frontal 

activity. However, there is lack of consensus in the literature regarding these 

trends under scenarios warming seas and climate change. Several trends have 

been suggested in recent years. Kahru et al. (2012) looked at frontal trends in the 

California Current System (CCS) and suggested a long-term increasing trend in 

frontal frequency in the CCS region. The findings of Kahru et al. (2012) are 

derived from the study of 29-year (1981-2009) sea surface temperature and 14-

year (1997-2010) chlorophyll datasets. Conversely, Kahru et al. (2018) focused 

on the influence of warm anomalies between 2014 and 2016 in the North-East 

Pacific. It was suggested that the frequency of fronts decreased significantly as a 

result of warm anomalies (Kahru et al. 2018). Whether this decline represents 

the beginning of a new long-term decreasing trend or is just an interruption in 

the long-term increasing trend previously suggested by Kahru et al. (2012) 

remains an open question (Kahru et al. 2018). Oerder et al. (2018) also found an 

increasing trend of frontal frequency near the coast of Central Chile. 

Furthermore, Obenour (2013) had suggested that the long-term trends of frontal 

activity as a result of climate change was not uniform in the global ocean. Overall, 

the global probability of fronts has increased linearly at a rate of 0.25% per 
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decade over 30 years (Obenour 2013).  

Ocean warming due to climate change is not distributed evenly across the 

global ocean. Marine heatwaves (MHWs) have also become longer and more 

frequent over the past decades (Oliver et al. 2018) affecting selected regions of 

the global ocean. Intense regional warming can be manifested in marine hotspots, 

or areas that are warming faster than 90% of the global ocean (Hobday & Pecl 

2014). In these hotspots, the impacts of ocean warming on ecosystems will likely 

be observed earlier. For example, Bakun (1990) proposed that global warming 

would lead to an intensification of coastal upwelling circulation by amplifying 

alongshore winds due to increased onshore-offshore atmospheric-pressure 

gradients. This intensification will then lead to an enhancement in frontal 

probability (Obenour 2013), which will likely occur earlier in marine hotspots 

than other areas. Additional frontal studies over these regions are important to 

resolve the previous discrepancies in findings and can provide knowledge to 

enable resource managers to adapt to the impacts of global ocean warming and 

intensive MHWs.  

 

1.3. Detecting oceanic fronts 

Remotely sensed imagery is widely used to find oceanic fronts. Most studies 

use sea surface temperature (SST) and chlorophyll-a concentrations (Chl) 

derived from satellite radiance values. Several methods have been proposed to 

extract frontal information from satellite imagery, including a variety of edge 

detection algorithms. These algorithms range from simple edge operators for 

characterising horizontal gradient of a field (Canny 1986; Sobel & Feldman 1973; 

Prewitt 1970) to more sophisticated algorithms such as cluster-shade analysis 

(Holyer & Peckinpaugh 1989), histogram analysis (Cayula & Cornillon 1992; 

Saraceno et al. 2005), entropy analysis based on the Jensen-Shannon divergence 

(Vázquez et al. 1999), and semivariogram analysis (Diehl et al. 2002).  

The two commonly-used methods for detecting thermal or Chl fronts are the 
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gradient-based method and histogram analysis. Among the edge detection 

algorithms developed so far, the Canny gradient-based method is one of the 

strictest edge defining methods (Canny 1986). The strictness in edge detection 

and simplicity of process for implementation make this method a popular choice 

for detecting marine fronts (Etnoyer et al. 2006; Wall et al. 2008; Miltiadou et al. 

2018). The histogram analysis developed by Cayula and Cornillon (1992) is 

originally designed for detecting thermal fronts in SST images. Considering its 

ability of handling of cloud contamination in the original SST data (Cayula & 

Cornillon 1992), this method has an irreplaceable position in detecting thermal 

fronts (Hickox et al. 2000; Wall et al. 2008). Both of these methods were used 

and compared in this study.  

 

1.4. Study aims 

Given the varying findings with regards to trends in frontal activity in the 

global ocean under changing climate conditions, there is an increasing need to 

verify frontal trends, particularly in areas where ocean warming, due to 

anthropogenic climate change, has had a profound impact. To this end, the aim 

of this research is to detect marine fronts in SST images of marine hotspot 

regions near Australia using two independent edge detection algorithms (the 

adaptive Canny (1986) gradient-based algorithm and the Cayula and Cornillon 

(1992) single image edge detecting (SIED) algorithm) and two SST datasets to 

further analyse and verify trends in frontal activity.  

This study set out to:  

1) test and compare the performance of two frontal detection 

algorithms on two SST datasets of two different spatial resolutions;  

2) determine whether fronts in two hotspot regions have changed in 

the probability over the course of a recent period of ocean warming 

due to climate change. 
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We hypothesise that the differences in the spatial resolution of datasets and 

detection principles lead to varied performance of the two algorithms. It is 

anticipated that despite the varying magnitude of frontal probability across the 

two algorithms and datasets, the general patterns and trends of frontal activity 

will be similar. According to the growth rate of 0.25% per decade of global frontal 

probability given by Obenour (2013), we hypothesise that the frontal probability 

and density both follow a gently increasing monotonous trend, however, 

interannual variations may result from climactic events, such as El Nin o/La Nin a. 

Regional differences may manifest themselves through the expression of changes 

to the strength and patterns of regional current systems.  
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Chapter 2  Data and methods 

2.1. Study regions 

This research mainly focuses on frontal activity in global marine hotspot 

regions, identified by Hobday and Pecl (2014). Hobday and Pecl (2014) 

calculated the linear trend in SST for each 1 × 1 pixel over 50 years (1950-1999) 

and used pixels with a high absolute temperature increase (highest 10%) to 

identify warming areas. Those warming areas larger than 25 square degrees 

were defined as hotspot regions (Hobday & Pecl 2014).  

 

Figure 2.1 Overlap of the distribution of the major marine hotspot regions based on two 

historical SST datasets (Had1SST and ERSST) (Hobday & Pecl 2014, Figure 1c). 

Specifically, this study examines two hotspot regions around Australia, 

Southeast Australia (SE) (Region 1) and Southwest Australia (SW) (Region 2) in 

Figure 2.1 (Hobday & Pecl 2014, Figure 1c). The study regions are represented 

as two rectangular areas (see Figure 2.2) that encompass the entire hotspot 

identified in Hobday and Pecl (2014). The SE study region was defined by a 

rectangular area with the upper-left corner at 25° S, 146° E and the lower-right 

corner at 43° S, 161° E (see Figure 2.2). This region extends about 950 km into 

the Tasman Sea from the East Coast of Australia, from Fraser Island to Hobart. 
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The SW study region was defined by a rectangular area with the upper-left 

corner at 21°55' S, 88°52' E and the lower-right corner at 43°22' S, 117°29' E (see 

Figure 2.2). This region extends about 2700 km southwest into the Indian Ocean 

from the west coast of Australia, from North West Cape to Albany. Both regions 

are affected by complex oceanographic conditions such as strong ocean currents, 

wind and freshwater inputs along the coasts, resulting in intense and complex 

frontal activity.  

 

Figure 2.2 The South West and South East Australia hotspot study regions. The South West 

Australia (SW) study region is located between 21°55' S, 88°52' E to 43°22' S, 117°29' E and the 

South East Australia (SE) study region is located between 25° S, 146° E to 43° S, 161° E. The 

images of the two the study regions show SST on 26 December 2015, derived from the Advanced 

Very High-Resolution Radiometer (AVHRR). Black lines in the image represent fronts detected by 

the Canny edge detection algorithm. 

 

2.2. Satellite Data 

In this study, we used two satellite SST products to generate frontal maps. One 

SST product (Australia’s Integrated Marine Observing System [IMOS] 2019) with 

a high spatial resolution (1.1 km × 1.1 km) was obtained by IMOS from the 

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High-

Resolution Radiometer (AVHRR) on all available NOAA Polar-orbiting 

Operational Environmental Satellites (POES). It is a satellite SST product 
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detected only at the surface of the ocean (SST-skin product), available on the 

Australian Ocean Data Network (AODN). Each grid cell of this product contains 

the 6-day average of all the highest available quality SST data that overlaps with 

that cell, weighted by the area of overlap. Another SST product (Ocean Biology 

Processing Group [OBPG] 2015) with a 4×4 km spatial resolution was obtained 

from the NASA EOSDIS Physical Oceanography Distributed Active Archive Center 

(PO.DAAC) from NASA’s Moderate Resolution Imaging Spectroradiometer 

(MODIS) on the Aqua satellite. It is an eight-day average SST-skin product (see 

Table 2.1). Both of the two products were day-time SST data (see Table 2.1).  

For each study region, there are approximately 60 AVHRR SST images and 

46 MODIS images for each year. In total, for each study region, we used 1538 

AVHRR SST images over 1993-2018 and 736 MODIS SST images over 2003-2018 

to detect fronts and analyse the trend in local frontal probability. SST datasets 

collected by two separate sensors cover different time periods and have different 

spatial resolutions. This not only helps to generate and analyse trends over 

different time periods, but also facilitates comparison and cross-validation 

across algorithms and datasets. 

Two edge detection algorithms were applied to each of the two SST datasets. 

The adaptive Canny method was applied to all the AVHRR and MODIS SST images 

of the SE and SW study regions. The Cayula and Cornillon SIED method was 

mainly used to detect fronts for the SE study region from the AVHRR SST images 

(see Table 2.1).  
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Table 2.1 Spatial and temporal resolution, data product type and source of the Moderate 

Resolution Imaging Spectrometer (MODIS) and the Advanced Very High-Resolution Radiometer 

(AVHRR) SST products used in this study. 

Sea Surface 

Temperature 

(SST) Data 

Advanced Very High-

Resolution Radiometer 

(AVHRR) 

Moderate Resolution 

Imaging Spectrometer 

(MODIS) 

Spatial resolution 1.1×1.1 km 4×4 km 

Data product type 6-day-average/day-time 8-day-average/day-time 

Data range  1993 - 2018  2003 - 2018  

Source https://portal.aodn.org.au/

search 

https://doi.org/10.5067/

MODSA-8D4D4 

 

2.3.  Edge Detection Algorithms 

The transition zone between two water masses with a large temperature 

difference can usually be observed with the naked eye in SST images. However, 

this process can be automated, and approaches such as edge detection 

algorithms allow for systematic extraction of oceanographic frontal features 

within the imagery.  

The “Canny method,” developed by Canny (1986), is a gradient-based 

algorithm. It defines edges by looking for local maxima of the gradient of a field, 

such as an SST field. The method detects horizontal gradients and produces the 

magnitude of the gradient as a continuous field which makes it simple to 

understand and use (Belkin & O’Reilly 2009). A test of the Canny method against 

a variety of other edge detection algorithms (Shrivakshan & Chandrasekar 2012) 

found that the Canny method performs better under noise. Therefore, this 

method was selected as one of the algorithms we used in this study. Due to its 

https://portal.aodn.org.au/search
https://portal.aodn.org.au/search
https://doi.org/10.5067/MODSA-8D4D4
https://doi.org/10.5067/MODSA-8D4D4
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simplicity, we use this method to identify and examine fronts in all of the SST 

satellite images.  

In addition to the Canny method, the population-based histogram algorithm 

developed by Cayula and Cornillon (1992) has been commonly applied to many 

marine surface signals such as SST and Chl to detect oceanographic fronts (SST: 

Cayula & Cornillon 1992, 1995; Ullman & Cornillon 1999, 2000, 2001; Belkin & 

Cornillon 2004; Chl: Stegmann & Ullman 2004; Bontempi & Yoder 2004). This 

method creates histograms from small independent windows of an image and 

examines whether there is a bimodal distribution to identify two water masses 

of different oceanographic characteristics, e.g., temperature. The original single 

image edge detection (SIED) histogram analysis was designed for detecting 

fronts in SST images. Several comparative studies (Cayula et al. 1991; Ullman & 

Cornillon 2000) between the performance of the Cayula and Cornillon (1992) 

SIED method and several other automated SST-detection methods found that 

SIED performed as well as or better than all of these methods. Due to the superior 

performance and wide application of the Cayula and Cornillon SIED method, it 

was selected and used in this study. However, because of the computationally 

intensive nature of the algorithm and the high-resolution SST data used, there 

was only enough time to process data using the SIED method or one of our study 

regions (the SE study region).  

Parameters in both algorithms were modified to optimise their 

performance in processing the SST data. The description of these two algorithms 

and their specific modifications are provided below. 

2.3.1. Adaptive Canny (1986) Gradient-based Algorithm 

The edge detection of the Canny algorithm contains five steps. In the first 

step, the image is smoothed with a 2-D Gaussian filter. The basic principle of all 

edge detection algorithms is to define an edge by detecting the difference 

between two pixels. Noise in raw satellite-derived SST data can easily affect the 

detection. The purpose of smoothing is to minimise false detection due to the 
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influence of obvious noise (e.g. s edges, processing errors, etc.). A 2-D isotropic 

Gaussian filter kernel of size (2k + 1) × (2k + 1) has the form: 

G(i, j) =  
1

2𝜋𝜎2 exp (−
(𝑖−(𝑘+1))2+(𝑗−(𝑘+1))2

2𝜎2 ) (1) 

where Sigma (σ) is the standard deviation of the Gaussian filter. In this study, a 

sigma of sqrt(2) was used, corresponding to a 7 × 7 kernel box (k = 3).  

Second, the edge gradient of each pixel was computed. An edge in an SST 

image may point in many different directions. The Canny algorithm uses a 3 × 3 

pixel window to decompose these directions. In a 3 × 3  pixel window, the 

direction of an edge can only go in four directions: horizontal, vertical and 

diagonal. In this way, the edge will be shown as its irregular shape when all the 

windows compose. The algorithm also computes the strength and direction of 

the edge gradient, which is assigned to the centre pixel of the window. The 

computation is given by  

Strength: G = √𝐺𝑥
2 + 𝐺𝑦

2 (2) 

Θ = atan2(𝐺𝑦, 𝐺𝑥) (3) 

where 𝐺𝑥 is the first derivative of the gradient in the horizontal direction 

and 𝐺𝑦 is the first derivative of the gradient in the vertical direction 

The third step is known as non-maximum suppression. Each edge extracted 

from the gradient value is usually wide because it usually contains two or more 

pixels in width. Non-maximum suppression helps to thin the edges by 

suppressing all the values of edge gradients to the local maxima. A multiple-pixel-

width edge is suppressed to only one-pixel width. This is achieved by comparing 

the edge gradient strength of a pixel with the edge gradient strength of other 

pixels in both the positive and negative gradients direction.  

Fourth, after applying non-maximum suppression, remaining edge pixels 

can represent real edges more accurately. However, there are still some edges 

that are caused by noise. Unlike the single threshold of other edge detection 
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algorithms, the Canny method uses two thresholds: an upper gradient threshold 

and a lower gradient threshold. Edge pixels with gradient magnitude below the 

lower threshold are filtered out. Edge pixels with gradient magnitude above the 

higher threshold are marked as strong edge pixels. Those with gradient 

magnitude in between are marked as weak edge pixels. Then the Canny method 

checks the location of each weak edge pixel to see if it is directly adjacent to a 

strong edge pixel. If it is directly adjacent, the weak edge pixel is re-marked as a 

strong edge pixel. Pixel chains are formed by connecting strong edge pixels and 

these re-marked weak edge pixels. 

Because the values of the two thresholds are partly dependent on the input 

image, it may not be appropriate to uniformly set two fixed thresholds. In this 

study, the Canny method was implemented using MATALBTM software 

(Mathworks, Inc.) to generate adaptive double thresholds for each SST image. 

Before performing the edge detection, the function first generates a gradient 

magnitude histogram for an image. The upper threshold is defined as the 70th 

percentile of this histogram, then the multiplication of the upper threshold and 

a fixed threshold ratio (0.4 in this study) is regarded as the lower threshold. This 

approach is a variant of the Otsu threshold selection method (Otsu 1979; Huo et 

al. 2010), which is based on image binarisation. In this study, adaptive double 

thresholds generated in this way have been appropriately adjusted to make 

detected edges a more realistic representation of thermal front lines.  

2.3.2. Cayula and Cornillon (1992) SIED Method  

The basic principle of the Cayula and Cornillon SIED algorithm is to define 

edges as the pixel chain that separate two populations of image pixels that follow 

a bimodal histogram distribution (Wall et al. 2008). The strength of an edge is 

defined as the difference between the two modes of the bimodal distribution. The 

distance between the two modes can also be used to define the strength of an 

edge due to the positive relationship between the distance and the difference in 

the bimodal distribution. Likewise, in oceanographic research, the SIED 

algorithm defines thermal fronts as the thin regions that separate two water 
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populations with relatively uniform temperature (Lekouara 2013). 

The Cayula and Cornillon SIED algorithm applied in this study is basically 

similar to the original SIED algorithm using default parameter settings (Roberts 

et al. 2010). As in the Canny method, it is essential to minimise the influence of 

noise before edge detection. The SIED algorithm achieves this with a 2-D median 

filter which smooths an image with a sliding square window (filter window) of a 

specific size. In such a window, the value of the central pixel is replaced by the 

median value of the values of all the pixels in the current window. The sliding 

window advances across the image one pixel at a time. In this study, we median-

filtered the SST images using the default 3 × 3 moving window. Second, the 

histogram algorithm is applied. The histogram algorithm finds a bimodal 

histogram distribution within a moving square window (histogram window) of 

a specific size. The original SIED algorithm uses a window size of 32 × 32 pixels, 

and the window is set to advance across 16 pixels at one time. The algorithm 

checks the window for a bimodal distribution in the pixel values (SST) every time 

the window moves. If there is a bimodal distribution in the current window, the 

mean values of the two populations (two water masses) will be computed. The 

difference between the mean values is compared with a given detection 

threshold. If the difference is larger than this threshold, the algorithm will 

conclude that there is an edge in the current window and determine the optimal 

value (SST) that separates the two populations. In this study, the detection 

threshold was set to 0.3, which indicates a minimum temperature difference of 

0.3 °C.  

Third, a spatial cohesion algorithm is applied in order to further verify 

whether the pixels of the two populations are sufficiently spatially separated, 

and remove noise arising from clouds and artefacts processed by satellite 

sensors. The presence of the two populations is initially verified by the operation 

above. Ideally, pixels of the same population should distribute compactly near a 

fixed location in the window if there is an edge. However, noisy data (i.e. clouds 

and satellite sensors processing artefacts) may also form populations in some 

histogram windows. This algorithm consists of two parts. There is a cohesion 
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coefficient in each part to judge the level of cohesion of each of the histogram 

windows. The first part checks the cohesion of each population by itself. 

According to Cayula and Cornillon (1992), the optimal cohesion coefficients for 

a 32 × 32 histogram window is 0.90. The second part checks the cohesion of both 

populations at the same time. For this part, the optimal cohesion coefficient for 

a 32 × 32 histogram window given by Cayula and Cornillon (1992) is 0.92. In 

each part, cohesion values of the histogram windows above the cohesion 

coefficient are regarded as high cohesion values and represent two well-

separated populations. Those windows with cohesion values below the 

coefficient will be filtered out because they are regarded as noisy windows. In 

this study, we used the same optimal cohesion coefficients (0.90, 0.92) to match 

our 32 × 32 histogram window. For comparing with the Canny method, fronts 

were also thinned to the width of one pixel.  

The Cayula and Cornillon (1992) SIED Algorithm in this study was applied 

by using the Marine Geospatial Ecology Tools (MGET) package (Cayula & 

Cornillon 1992; Roberts et al. 2010) in ArcGIS (Environmental Systems Research 

Institute/ESRITM).  

 

2.4. Frontal Analysis  

Each frontal map contains many pixels, including those with fronts and 

those without fronts. For each map, frontal density (FD) was calculated as the 

number of frontal pixels over the total number of image pixels.  

Secondly, for the analysis of frontal probability, we calculated the 

probability of frontal encounter (PFE), defined in Breaker et al. (2005). In 

different frontal maps, pixels were regarded as either frontal pixels or a non-

frontal pixel. Within a certain number of frontal maps, we took the number of 

times a particular pixel was recognised as a frontal pixel by an edge detection 

algorithm and divided this value by the number of times that the pixel was a non-

frontal pixel, yielding a PFE value. We produced around 60 AVHRR frontal maps 
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and 46 MODIS frontal maps for each year. Therefore, an annual PFE image was 

produced by using all of the 60 AVHRR frontal maps or 46 MODIS frontal maps. 

Also, a monthly PFE image was produced by using 5 (=60/12 months) AVHRR 

images or 4 (≈46/12 months) MODIS images. An average of the PFE images was 

also taken to calculate corresponding annual and monthly PFE values.  

Finally, we applied a modified Mann-Kendall (MMK) test to all of our time 

series to statistically assess if there was a monotonic trend in the frontal density 

and probability over time. The MMK test used in this study is based on the 

original Mann-Kendall test with an addition of the Yue and Wang (2004) variance 

correction approach, which addresses the issue of serial correlation in trend 

analysis. This part was achieved by using ‘mmky1lag’ function in CRAN-R 

package ‘modifiedmk’ (Patakamuri & O’Brien 2019).  
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Chapter 3  Results 

3.1. Analysis of SST data 

To accurately assess the performance of the frontal detection algorithms, it 

was necessary to evaluate the data quality of the two datasets (AVHRR/MODIS). 

This was achieved by computing the proportion of pixels with valid SST data in 

each of the SST images for each year. The test results of each dataset over each 

study region are shown in Figure 3.1, in the form of annual mean data quality. 

Data quality can reflect the reliability of subsequent results to a certain extent. 

We set the standard at 0.5 to distinguish between high (>0.5) and low (<0.5) 

data-quality years. The results of the high-quality data years are considered 

highly reliable in the subsequent sections of the results. Figure 3.2 shows the 

comparison between high- and low-quality AVHRR SST images. It can be seen in 

the image of 2001 that there is a large blank area due to missing data. It is not 

possible for frontal detection algorithms to detect fronts in areas with missing 

data. Therefore, according to the description of FD and PFE above, fewer 

detected fronts due to missing data will result in lower FD and PFE (see section 

2.4).  

According to the test results (see Figure 3.1a and 3.1b), for both study 

regions, there is an apparent poor data quality period (data quality below 0.5) 

between 2001 and 2005 for the AVHRR data. Although the data quality of the 

AVHRR data in 2003 shows a value above 0.5, poor data coverage in 2001, 2002, 

2004 and 2005 will have to be treated with caution when interpreting the 

remaining results. In addition, poor data coverage was evident in the SW study 

region in 1993, 1994 and 2017 (see Figure 3.1b). These years of low-quality data 

will lead to a significantly low FD and PFE values. Compared with the AVHRR 

data, the assessment of the MODIS data quality (see Figure 3.1c and 3.1d) show 

absolutely higher data quality (over 0.8 data quality) during the whole time 

period between 2003 and 2018.  
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Figure 3.1 Annual average data quality of SST datasets used in this study for the South East (SE) 

and South West (SW) study regions for Advanced Very-High-Resolution Radiometer (AVHRR) and 

Moderate Resolution Imaging Spectroradiometer (MODIS) datasets.  

 

Figure 3.2 Examples of high and low data-quality SST images within the Advanced Very-High-

Resolution Radiometer (AVHRR) dataset. 

 

3.2. Analysis of the two frontal detection methods (Aim 1) 

3.2.1. Adaptive Canny algorithm 

The Adaptive Canny gradient-based algorithm was applied to both the 



29 

AVHRR and MODIS SST data over each study region (SE/SW). In order to see the 

influence of the spatial resolution of the data on edge detection, some SST images 

with clear fronts are shown in Figure 3.3. Figure 3.3 includes the AVHRR SST 

images on December 26, 2015. Fronts (black lines in Figure 3.3) were detected 

with the Canny method. In the following paragraphs, an SST image with fronts 

will be referred to as a frontal map. For comparison, frontal maps on the same 

date from the MODIS SST data are shown in Figure 3.4. Areas inside the red and 

white boxes will be used to make comparisons across algorithms and datasets.  

The spatial resolution of the SST data has a significant impact on the Canny 

method. It is clear by comparing Figure 3.3 and Figure 3.4 that the Canny method 

generates thinner fronts when applied to the higher-resolution AVHRR SST data 

(1.1×1.1 km) compared with the MODIS SST data (4×4 km). This is expected 

because the Canny method suppresses edges to one-pixel width (Canny 1986). 

This width is defined by the spatial resolution of the input datasets. Higher-

resolution data corresponds to more and smaller data pixels when displayed on 

an image, and further determines a thinner front width. In addition, the spatial 

resolution also determines the effectiveness of the algorithm to detect small-

scale fronts. For instance, based on the AVHRR data, there are obvious and dense 

front patterns over the southwest part of the SE study region (near Furneaux 

Group and Tasmania) (inside the red box in Figure 3.3a). However, fewer fronts 

can be found in the same area in Figure 3.4. It is also worth noting that lower-

quality SST data does have an effect on the Canny method. According to Figure 

3.4b, there is a large area of missing SST data over the southern part of the SW 

study region (inside the white box), where a few fronts were detected.  

3.2.2. Cayula and Cornillon SIED algorithm 

To make a comparison with the Canny method, the SIED method was also 

applied to the same SST images from December 26, 2015. The frontal maps are 

shown in Figure 3.5 (AVHRR) and Figure 3.6 (MODIS). Because the SIED method 

in the MGET package also suppresses edges to one-pixel width (Cayula & 

Cornillon 1992; Roberts et al. 2010), thinner fronts can also be found in the 
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AVHRR frontal maps compared to the MODIS images. Although there are fewer 

fronts than the Canny method, it is still clear by comparing Figure 3.5 and Figure 

3.6 that more fronts can be detected from high-resolution data. This indicates 

that the SIED method is also affected by the spatial resolution of input data.  

3.2.3. Algorithm Comparison  

Obviously, the performance of the two methods (Canny/SIED) varies with 

datasets. By comparing Figure 3.3 (AVHRR Canny) and Figure 3.5 (AVHRR SIED), 

the Canny method detected more fronts than the SIED method. This can also be 

concluded by comparing the MODIS images (see Figure 3.4 and 3.6). The 

difference between the two methods is also reflected in front detection near 

areas with poor data coverage. This can be found in the comparison between 

Figure 3.4b and 3.6b (area in the white boxes). Despite the obvious effect of 

missing data on front detection, the SIED method appears to perform better 

while detecting fronts in the low-quality SST data. The performance of the Canny 

method is obviously affected by data missing.  

The difference between the two algorithms is also reflected in their PFE 

trends. Since the SIED method is applied only to the AVHRR SST data over the SE 

study region, the annual PFE data of the SE study region is shown in Figure 3.7. 

In Figure 3.7, we mainly focus on the difference between the two methods. 

Trends will be discussed in further detail in Section 3.3. In Figure 3.7, firstly, the 

overall PFE trends of the two methods are similar. But the annual PFE data based 

on the SIED method is significantly lower than the Canny PFE data. This coincides 

with the difference in the number of detected fronts between the two algorithms 

as mentioned in the previous paragraph. In addition, the difference in algorithm 

performance when there are areas of missing data is clearly illustrated in Figure 

3.7. Based on Section 3.1, we know that the data quality between 2001 and 2005 

is significantly lower. In this case, the PFE data based on the Canny method 

during this period is apparently lower than in other years. However, the 

difference in the range of the PFE values calculated using the SIED algorithm 

between 2001 and 2005 is much less than using the Canny method. This 
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indicates that the effect of low-quality SST data on the performance of the SIED 

method is less than compared with the Canny method. For comparison, the 

MODIS PFE derived by the Canny method is also shown in Figure 3.7. Regardless 

of the potential issues with data coverage between 2001 and 2005, the PFE 

values from both the MODIS and AVHRR range from 0.055 to 0.075 and average 

0.064.  
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Figure 3.3 Frontal maps derived from the AVHRR SST data using the Adaptive Canny gradient-

based algorithm in (a) the SE study region and (b) the SW study region. The images contain SST 

data from 26 December 2015 using the Advanced Very High-Resolution Radiometer (AVHRR). 

Black lines are thermal fronts and white areas indicate missing SST data.
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Figure 3.4 Frontal maps derived from the MODIS SST data using the Adaptive Canny gradient-

based algorithm in (a) the SE study region and (b) the SW study region. The images show SST 

data from 26 December 2015 using the Moderate Resolution Imaging Spectroradiometer 

(MODIS). Black lines are thermal fronts and white areas indicate missing SST data.  
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Figure 3.5 Frontal maps derived from the AVHRR SST data using the Cayula and Cornillon SIED 

algorithm in (a) the SE study region and (b) the SW study region. The images show SST data from 

26 December 2015 using the Advanced Very High-Resolution Radiometer (AVHRR). Black lines 

are thermal fronts and grey areas indicate missing data.  
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Figure 3.6 Frontal maps derived from the MODIS SST data using the Cayula and Cornillon SIED 

algorithm in (a) the SE study region and (b) the SW study region. The images show SST data from 

26 December 2015 using the Moderate Resolution Imaging Spectroradiometer (MODIS). Black 

lines are thermal fronts and grey areas indicate missing data.



 36 

 

Figure 3.7 Time series of annual probability of frontal encounter (PFE) in the South East Australia (SE) study region based on different edge detection algorithms. 
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3.3. Trend Analysis (Aim 2) 

3.3.1. AVHRR results 

Based on the data quality analysis in Section 3.1, the entire 26-year study 

period of the AVHRR results was divided into three sub-periods: P1, P2 and P3. 

P1 corresponds to the period from 1993 to 2000 and P2 corresponds to the 

period from 2001 to 2005. P3 represents the period between 2006 and 2018. 

The main part of this section will pay more attention to the images and numerical 

results of P1 and P3 because results of P2 were affected to a large extent by a 

large amount of missing AVHRR SST data.  

According to the definition of PFE above, the high PFE value of a pixel 

corresponds to high frontal probability, which means that frontal activity 

frequently occurs at a particular pixel location. In the following PFE images, areas 

of relatively high PFEs were represented by bright/warm colours while those 

with low PFEs are represented by cooler colours. 

Figure 3.8 shows the 26 annual PFE images of the SE study region. Fronts in 

these images were derived from the AVHRR data using the Adaptive Canny 

gradient-based algorithm. Overall, the images of 2001, 2002, 2004 and 2005 

show much lower frontal activity than those of other years due to low-quality 

AVHRR SST data (see Section 3.1). In terms of spatial distribution, frontal activity 

is higher near the coastline compared to offshore. Compared to the P1 period, 

frontal activity of the P3 period seems to be higher. It also appears that frontal 

activity has increased in P3 over the years. Overall, the frontal activity between 

1993 and 2018 appears to follow a gently rising trend. 
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Figure 3.8 Annual probability of frontal encounter (PFE) images of the South East Australia (SE) study region derived from the Advanced Very High-Resolution Radiometer (AVHRR) 

data. Thermal front detection is based on the Adaptive Canny Gradient-based Algorithm. P1 is the period of 1993 to 2000, P2 is the period of 2001 to 2005 and P3 is between 2006 to 

2018. White areas indicate a PFE of 0.
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Figure 3.9 Time series of (a) the 6-day average FD, (b) the monthly average PFE and (c) the annual average PFE for the SE study region using the Advanced Very High-Resolution 

Radiometer (AVHRR) SST data. Thermal fronts were detected by the Adaptive Canny Gradient-based Algorithm. FD is frontal density. PFE is the probability of frontal encounter. P1 

denotes the period between 1993 to 2000, P2 between 2001 to 2005 and P3 between 2006 to 2018.  
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Table 3.1 Comparison of the mean values of the smoothed FD (red curve in Figure 3.9a), 

smoothed monthly PFE (red curve in Figure 3.9b) and annual PFE (Figure 3.9c) in P1 and P3 

(results from AVHRR SST data of the South East Australia (SE) study region). P1 is between 1993 

to 2000 and P3 is the period between 2006 to 2018. 

Frontal Product P1 P3 P3-P1 

FD (smoothed) 0.0391  0.0435↑ +0.0044 

Monthly PFE (smoothed) 0.0782 0.0861↑ +0.0079 

Annual PFE 0.0613 0.0678↑ +0.0065 

↑, the larger value between the two values of P1 and P3; FD, frontal density; PFE, probability of 

frontal encounter; P1, period from 1993 to 2000; P3, period from 2006 to 2018.  

In order to analyse the trends of frontal activity, the corresponding time 

series of (a) the 6-day average FD, (b) the monthly average PFE and (c) the 

annual average PFE are shown in Figure 3.9. In Figure 3.9a and 3.9b, in order to 

show the seasonal variability and overall trend of FD and monthly PFE, the 

original curves were smoothed by applying the appropriate smoothing windows. 

Smoothing was done using a moving average filter known as the Savizky-Golay 

filter (Orfanidis 1996). Unsmoothed raw FD and monthly PFE data are displayed 

as dotted lines. Smoothing is based on two different smoothing windows. To 

represent the seasonal variability of FD, we smoothed its raw data to represent 

annual trends (blue curve in Figure 3.9a). This corresponds to a smooth span of 

60 because there are 60 FD values in a year for the 6-day average AVHRR data. 

The red curve representing the overall FD trend was smoothed in a smooth span 

of 180 (see Figure 3.9a). Monthly PFE values were smoothed to represent 

seasonal variability (see Figure 3.9b). Seasonal variability of FD and monthly PFE 

can also be found in Figure 3.9a and 3.9b (blue curves). Roughly, both FD and 

monthly PFE have significant decreasing trends in the first half of each year and 

increasing trends in the second half. This means that frontal activity reached a 

trough from June to August (winter) and a peak from November to January 

(summer).  
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Despite the seasonal variation, the FD and PFEs (monthly PFE and annual 

PFE), frontal activity follows a gentle increasing slope (see Figure 3.9c). This 

trend is not significant in Figure 3.9, but it can still be captured from the mean 

FD and PFEs (see Table 3.2) particularly for the P1 and P3 periods. Compared to 

P1, the mean FD and PFEs of P3 show a slight increase. Another point worth 

noting in Figure 3.9c is that the trend of annual PFE has a relatively significant 

fluctuation between 1994 and 1996 (see Figure 3.9b). The red smoothed curves 

in Figure 3.9a and 3.9b also show the same fluctuation pattern during this period. 

This can be attributed to the relatively poor data quality (~0.5) in 1994 (see 

Figure 3.1a).  

For the SW study region, the 26 annual PFE images are shown in Figure 3.10. 

Because this study region covers a larger area and extends to further into the 

Indian Ocean, the difference between coastal and ocean frontal activity is much 

clearer. According to the data quality analysis in Section 3.2.1, in the SW study 

region, the PFE images of 2001, 2002, 2004 and 2005 also show a lower frontal 

activity. In addition, the frontal probability between 2015 and 2018 decreases. 

This is also due to low-quality SST data. Except for images affected by low-quality 

SST data in P2, the overall trend of frontal activity over the SW study region 

seems stable during P1 and P3.  

Figure 3.11 shows the trends in (a) the 6-day average FD, (b) the monthly 

average PFE and (c) the annual average PFE for the SW hotspot region. The FD 

and monthly PFE were also smoothed in the same way as in Figure 3.9. The blue 

curves in Figure 3.11a and 3.11b also show seasonal variability in the FD and 

monthly PFE, peaking in summer and reaching a trough during the winter 

months. This is consistent with the conclusion drawn from the analysis of the SE 

study region above. 

As seen in the imagery of Figure 3.10, the trends of frontal probability for 

the SW study region also seems stable in Figure 3.11. But according to the mean 

data shown in Table 3.2, it can be found that the trend is also gently increasing. 

By comparing Table 3.2 with Table 3.1, the overall trends of PFEs for SW appears 
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to be flatter than for the SE region. It is noticed that there are obvious fluctuations 

in trends of FD and PFEs in the periods of 1993-1995 and 2015-2018. Based on 

Section 3.1, we know that the SST data are of low quality in 1993, 1994 and 2017. 

In addition, according to Figure 3.6b, during the two periods, trends of FD and 

PFEs follow a similar pattern to data quality. Therefore, these fluctuations may 

be largely influenced by missing data. 
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Figure 3.10 Annual probability of frontal encounter (PFE) images of the South West Australia (SW) study region derived from the Advanced Very High-Resolution Radiometer (AVHRR) 

data. Thermal front detection is based on the Adaptive Canny Gradient-based Algorithm. P1 is the period of 1993 to 2000, P2 is the period of 2001 to 2005 and P3 is between 2006 to 

2018. White areas indicate a PFE of 0.  
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Figure 3.11 Time series of (a) 6-day average FD, (b) monthly average PFE and (c) annual average PFE for the SW study region using the Advanced Very High-Resolution Radiometer 

(AVHRR) SST data. Thermal front detection was based on the Adaptive Canny Gradient-based Algorithm. FD is frontal density. PFE is the probability of frontal encounter. P1 denotes 

the period between 1993 to 2000, P2 between 2001 to 2005 and P3 between 2006 to 2018;
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Table 3.2 Comparison of the mean values of the smoothed FD (red curve in Figure 3.11a), 

smoothed monthly PFE (red curve in Figure 3.11b) and annual PFE (Figure 3.11c) in P1 and P3 

(results from AVHRR SST data of the South West Australia (SW) study region). P1, Period of 1993 

to 2000; P3, Period of 2006 to 2018; 

Frontal Product P1 P3 P3-P1 

FD (smoothed) 0.0361  0.0400↑ +0.0039 

Monthly PFE (smoothed) 0.0531 0.0588↑ +0.0057 

Annual PFE 0.0419 0.0468↑ +0.0049 

↑, the larger value between the two values of P1 and P3; FD, frontal density; PFE, probability of 

frontal encounter; P1, period from 1993 to 2000; P3, period from 2006 to 2018.  

3.3.2. MODIS results 

Based on the analysis in Section 3.1, results derived from high-quality 

MODIS data potentially provide a more accurate assessment of trends of frontal 

activity in these hotspots. Similar to the analysis of the AVHRR results, let us first 

pay attention to the PFE images over the years. Figure 3.12 shows the 16 annual 

PFE images of the SE study region derived from the MODIS data using the 

Adaptive Canny gradient-based algorithm. Each image in Figure 3.12 shows 

areas of higher frontal activity near the coastline between 25° S and 35° S. The 

PFE or frontal activity during most years is similar except in 2004, 2010 and 2018. 

Large areas of relatively high PFE appear during 2004 and 2018. 2010 is a year 

that has a relatively lower frontal activity compared to other years. Compared 

with images derived from AVHRR data (see Figure 3.8), the MODIS PFE images 

show greater differences in frontal activity between low-latitude and high-

latitude areas; higher in the lower latitudes and lower in the higher latitudes. For 

some years such as 2018, the AVHRR and MODIS images show quite different 

patterns. In addition, based on the high-quality MODIS SST data, images of 

apparent low frontal activity (2004 and 2005) of AVHRR (see Figure 3.9) are not 

evident in the MODIS data (see Figure 3.12).  
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In the same way, time series of (a) the 8-day average FD, (b) the monthly 

average PFE and (c) the annual average PFE for the SE region are shown in Figure 

3.13. In Figure 3.13a, for seasonal variability, the smoothing window of FD was 

adjusted as there are a total of 46 FD values in a year for the 8-day average MODIS 

data. Another smooth span for FD was also adjusted accordingly to show the 

overall trend of FD. Based on the blue curves in Figure 3.13a and 3.13b, seasonal 

variability in FD and monthly PFE can still be found. There is high frontal activity 

in summer and low activity in the winter. This is consistent with the results of 

the AVHRR data. In addition, the overall trends of frontal density and probability 

during the whole time period of the MODIS data (from 2003 to 2018) follow a 

gently rising trend (see Figure 3.13). This increase is more obvious compared 

with the trends in the AVHRR data (see Figure 3.9). According to Figure 3.13c, 

between 2003 and 2018, the annual PFE increase from ~0.060 to ~0.075. It is 

also worth noting that there appears to be a decrease in FD and PFEs from 2006 

and a trough in 2010. This is particularly evident in the curve of the annual PFE 

(see Figure 3.13c). The value of the 2010 annual PFE is the lowest of all 16 years 

(~ 0.055). Since then, the trends of FD and PFEs increase, reaching a peak in 2018 

(annual PFE ~0.077). During this period, the upward trends flattened twice; 

once in 2015 and then again in 2017 (see Figure 3.13). This can also be seen in 

the annual PFE curve (see Figure 3.13c).  
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Figure 3.12 Annual probability of frontal encounter (PFE) images of the South East Australia (SE) 

study region derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. 

Thermal front detection is based on the Adaptive Canny Gradient-based Algorithm. P1 is the 

period of 1993 to 2000, P2 is the period of 2001 to 2005 and P3 is between 2006 to 2018. White 

areas indicate a PFE of 0.  
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Figure 3.13 Time series of (a) the 6-day average FD, (b) the monthly average PFE and (c) the annual average PFE for the SE study region using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) SST data. Thermal front detection was based on the Adaptive Canny Gradient-based Algorithm. FD is frontal density. PFE is the probability of frontal 

encounter
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For the SW study region, the 16 annual PFE images are shown in Figure 3.14. 

Similar to the SE study region, images in Figure 3.12 also show a regional 

difference in frontal activity between low- and high-latitude areas, which is 

harder to see in the AVHRR PFE images in Figure 3.8. In addition, the spatial 

structure of frontal activity between 2003 and 2013 is largely similar with higher 

activity in the lower latitudes and along the coastal areas. It appears that there is 

a decrease in frontal activity between 2014 to 2017 over the whole SW study 

area. But this decrease did not seem to continue after 2017. In addition, in 2018, 

there is a clear gradient between areas of high and low activity at about 32S. 

Similarly, Figure 3.15 shows trends of (a) the 8-day average FD, b) the 

monthly average PFE and c) the annual average PFE for the SW study region. 

Seasonal variability in FD and monthly PFE can still be found from the blue 

curves in Figure 3.15a and 3.15b, reflecting a similar pattern as was found in the 

AVHRR data. So far, the results of two datasets (AVHRR/MODIS) over two study 

regions (SE/SW) have reached an agreement on the seasonal variability of FD 

and monthly PFE; high in summer and low in winter. In addition, based on Figure 

3.15, the overall trends of frontal density and probability for SW follow the gently 

rising trends for the SE region. Over the course of the 16 years, the annual PFE 

has increased from approximately 0.044 to 0.057. Corresponding to the 

decreased frontal activity between 2014 and 2017 mentioned in the analysis of 

Figure 3.14, FD and PFEs in Figure 3.15 also decline during the same time period. 
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Figure 3.14 Annual probability of frontal encounter (PFE) images of the South West Australia 

(SW) study region derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

data. Thermal front detection is based on the Adaptive Canny Gradient-based Algorithm. P1 is the 

period of 1993 to 2000, P2 is the period of 2001 to 2005 and P3 is between 2006 to 2018. White 

areas indicate a PFE of 0.  
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Figure 3.15 Time series of (a) the 6-day average FD, (b) the monthly average PFE and (c) the annual average PFE for the SW study region using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) SST data. Thermal front detection was based on the Adaptive Canny Gradient-based Algorithm. FD is frontal density. PFE is the probability of frontal 

encounter. 
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3.4. Modified Mann-Kendall test (Aim 2) 

Based on Section 3.2, results produced by AVHRR and MODIS all show 

gently increasing frontal activity over the years. To assess these trends, we 

applied the modified Mann-Kendal test to all of the time series of FD and PFEs. 

Results are shown in Table 4. First, tests for each time series provides a positive 

Z-value, which indicates that frontal activity does increase across the years in 

both hotspot regions. In addition, according to their corresponding P-values, 

most PFE results show that the trends are not significant. The upward trend of 

FD based on the Canny method is statistically significant for both the AVHRR and 

MODIS datasets.  

  



53 

Table 3.3 Results of the Modified Mann–Kendall test applied to serially correlated data. The test 

was applied to results from the Advanced Very-High-Resolution Radiometer (AVHRR)/Moderate 

Resolution Imaging Spectroradiometer (MODIS) data over the South East Australia study region 

(SE) and the South West Australia study region (SW), using the Cayula and Cornillon SIED 

algorithm (SIED)/Adaptive Canny gradient-based algorithm (Canny). APFE, the annual 

probability of frontal encounter; MPFE, the monthly probability of frontal encounter; FD, frontal 

density; 

Frontal 

Product 

Source Time series Region Edge 

detection 

algorithm 

Z-value P-value 

APFE AVHRR 1993-2018 SE SIED +1.73* 0.083 

APFE AVHRR 1993-2018 SE Canny +0.69 0.492 

APFE AVHRR 1993-2018 SW Canny +0.44 0.659 

APFE MODIS 2003-2018 SE Canny +0.48 0.635 

APFE MODIS 2003-2018 SW Canny +2.63*** 0.009 

MPFE AVHRR 1993-2018 SE Canny +1.11 0.268 

MPFE AVHRR 1993-2018 SW Canny +0.73 0.468 

MPFE MODIS 2003-2018 SE Canny +0.63 0.528 

MPFE MODIS 2003-2018 SW Canny +1.37 0.168 

FD AVHRR 1993-2018 SE Canny +2.92*** 0.003 

FD AVHRR 1993-2018 SW Canny +2.17 ** 0.030 

FD MODIS 2003-2018 SE Canny +1.70 * 0.089 

FD MODIS 2003-2018 SW Canny +2.83*** 0.005 

*, significant at a 90% confidence interval; ** significant at a 95% confidence interval; and ***, 

significant at a 99% confidence interval. 
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Chapter 4  Discussion  

In comparing results between the SST products (AVHRR and MODIS) and 

the algorithms (Canny and SIED), this study mainly examined the differences 

between the performance of the two frontal detection algorithms applied to two 

SST products and the interannual and seasonal trends of frontal activity in 

marine hotspots.  

 

4.1. Comparison between the edge detection algorithms and the SST 

products (Aim 1) 

Firstly, the spatial resolution of the SST data influences the performance of 

both algorithms (Canny and SIED). Thinner and smaller-scale fronts can be 

detected in high-resolution SST data from AVHRR compared to the low-

resolution MODIS data. This is likely due to the front-thinning process in the two 

algorithms that suppresses fronts to one-pixel width (Canny 1986; Cayula & 

Cornillon 1992; Roberts et al. 2010), with the spatial resolution of the data 

determining the size of imagery pixels. Higher spatial resolution corresponds to 

smaller pixels. Smaller frontal pixels detected by edge detection algorithms form 

thinner fronts. Based on this, we recommend the high-resolution AVHRR data for 

detecting and resolving fine-scale fronts, especially for studying nearshore 

coastal areas. The coarser-resolution MODIS data should be considered for 

exploring the overall change in fronts in areas for regional comparison.   

According to the algorithm comparison, this study demonstrates that there 

are two differences between the Canny and the SIED methods. One of them is 

that the Canny method detected more fronts than SIED. A possible reason for this 

difference is the detecting principles of the two algorithms. The Canny method 

defines thermal fronts by finding strong temperature gradient in the SST field, 

while SIED analyses the histogram of SST values to search for evidence of two 

distinct temperature populations (Robinson 2010). Therefore, although the 

Canny method can detect more fronts, there is no doubt that the detection is 
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sensitive to changes and may contain false detections due to the potential noise 

in SST data (e.g. cloud edge, processing error etc.). Holyer and Peckinpaugh 

(1989) also suggested that gradient-based methods were too sensitive to fine-

scale features and weak gradients. As for the SIED method, histogram analysis 

focuses more on detecting two water masses with different properties (SST) so 

that it can partly filter out false fronts (Cayula & Cornillon 1992). According to 

the evaluation of the SIED method and the Sobel gradient-based method by 

Ullman and Cornillon (2000), the gradient method detects more false fronts and 

is less tolerant to noise than the histogram method. Based on this study, further 

evaluation of the Canny method in the future is also expected to draw a similar 

conclusion. Another important difference is that SIED performs better when 

processing poor-quality data. We suspect this to be due to the larger kernel box 

(histogram window) (32×32) applied in the SIED method compared to the Canny 

method (3×3 kernel box). Because the same number of missing data pixels 

occupy different proportions in kernel boxes of different sizes. The larger the 

proportion, the larger the impact of missing data on frontal detection. So a 

smaller kernel box makes the Canny approach more vulnerable to missing data 

(see Figure 3.4b). Through a further evaluation of algorithms, this might be fixed 

by adjusting the kernel size in future studies. Wall et al. (2008) applied the SIED 

method with two different kernel sizes (32×32, 16×16). Their results showed 

that the 16×16 kernel box can detect more fronts including some weak fronts, 

compared with the 32×32 kernel box.  

Ground-truthing surveys will be required to further evaluate these 

detection methods. Currently, frontal studies just assume that frontal detection 

gives reasonable results, and that they are based on the data-limited ground 

truth validation. A visual examination of fronts drawn on satellite imagery 

remains the most common method for validating the effectiveness of the 

algorithms (Wall et al. 2008). However, based on the results of this study, 

inconsistencies between algorithms and datasets are evident. Further ground-

truthing surveys will be able to confirm whether there is excessive detection 

using the Canny method or whether fronts are missed with the SIED method. 
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Therefore, although ground truthing is necessary to validate the results of this 

study, it is expensive and labour intensive. Ground truthing fronts in satellite 

images could involve coordination with autonomous underwater vehicle (AUV) 

surveys. The AUV surveys had been used by Robbins et al. (2006) to gather 

spatially and temporally relevant data that can be used in collaboration with 

satellite imagery for studying fronts associated with algal bloom dynamics. In 

addition, Zhang et al. (2012) developed an AUV method that allows AUV to 

autonomously detect and track an upwelling front and combined AUV data with 

SST satellite imagery to examine structure and dynamics of upwelling fronts. 

Based on the requirements suggested by Pereira et al. (1995), to validate the 

frontal detection algorithms, immediate in situ temperature data produced by 

AUV sensors should be combined with satellite imagery and frontal detection to 

evaluate the integration of results from AUV surveys and front detection 

algorithms. In addition, AUV surveys can also contribute to the determination of 

the fine-scale structure of fronts by combining AUV surveys with higher 

resolution satellite imagery, such as Landsat data (30 × 30m). 

Both the Canny method (gradient method) and the SIED method (statistical 

method) can contribute to local definitions of SST fronts (Chapman et al. 2020). 

Evaluation and comparison of the two methods based on in situ data are still 

needed to judge their applicability to different conditions. Results of additional 

evaluations are likely to be similar to the results of the evaluation by Ullman and 

Cornillon (2000). They evaluated different gradient-based and histogram-based 

edge detection algorithms using AVHRR SST data and made a comparison 

between SST fronts detected by algorithms and obtained from in situ data. They 

suggested that the SIED method performed better in providing accurate statistics 

of fronts occurrence at scales over 10 km, while the gradient method (based on 

the Sobel gradient operator) was better at scales below 10 km. So, for further 

frontal studies, gradient methods may be a better choice for detecting fine-scale 

fronts than the SIED method.  
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4.2. Trends of frontal activity (Aim 2) 

The assessment of frontal activity of the two Australian hotspots (SE/SW) 

illustrate changes in recent years. Despite the influence of missing data (see 

Section 3.1), we can still draw reliable conclusions to confirm our hypothesis on 

trends. Firstly, the overall trends of frontal probability (PFEs) and frontal density 

(FD) all follow a gently-increasing monotonic trend. Although some of the 

increasing trends are not statistically significant based on the modified Mann-

Kendall test, they have, to a certain extent, confirmed a gentle increase in frontal 

activity. According to the description of hotspots given by Hobday and Pecl 

(2014), the two hotspots are experiencing ocean warming. Therefore, there may 

be a positive correlation between increasing frontal activity and the warming 

ocean. In the SE study region, ocean warming appears to be related to the 

southward extension of the East Australia Current (EAC) (Ridgway 2007). 

Relying on series of measurements of SST and salinity, Willis et al. (2004) 

suggested that decadal-scale spin-up of the South Pacific Gyre, partly due to 

greenhouse warming and ozone depletion (Cai et al. 2005; Cai 2006), possibly 

contributed to the extension of EAC. Carrying tropical water, the southward and 

eastward flowing of EAC form strong eddies and fronts in the Tasman Sea, such 

as the Tasman Front (Godfrey et al. 1980; Andrews et al. 1980; Stanton 1981; 

Mulhearn 1987; Belkin & Cornillon 2003). The Tasman Front can also be the key 

to explain the spatial difference in PFE across latitudes in Figure 3.12 because it 

is where the EAC begins to meander east (~ 35°S), which may cause the 

difference in south-north stability of water masses (Belkin & Cornillon 2003). 

The southward extension of EAC means that more eddies and fronts will appear 

in the southern Tasman Sea (Oliver et al. 2015). This was also confirmed by an 

Ocean Eddy-resolving Model (OEM) used by Matear et al. (2013). Their model 

shows an increased EAC transport with increased eddy activity and the 

southward shift of the EAC. In the SW study region, frontal activity is largely 

impacted by two strong ocean currents, the West Australian Current (WAC) and 

the Leeuwin Current (LC). WAC is produced by the west wind drift on the 

southern Indian Ocean and transfers cold water from the Southern Ocean to the 
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north. LC is inshore of WAC and transfers warm tropical water to the south. They 

flow in opposite directions and further cause strong convection in the SW study 

region. Their long-term changes in flow and location, as well as their correlation 

between each other, may all lead to increasing frontal activity. Taking LC as an 

example, LC has experienced a strengthening trend in the past two decades (Feng 

et al. 2009). However, it is likely due to natural decadal variability instead of 

long-term ocean warming because many climate models have suggested a 

weakened LC due to global warming (Feng et al. 2009). Both datasets we used 

for the SW study region did not cover enough years to observe long-term trends 

two decades ago. However, the increasing frontal activity of the SW study region 

does appear to be accompanied by ocean warming (Hobday & Pecl 2014) and the 

decadal-scale strengthening of LC (Feng et al. 2009).  

Another important conclusion is the seasonal variability of frontal 

probability and density. This is fairly evident because the results of the two study 

regions show similar patterns. Both regions show high frontal activity in austral 

summer months and low frontal activity in winter months. This is shown in the 

plots of FD and monthly PFE in Figures 3.9, 3.11, 3.13 and 3.15. Seasonal 

variation of EAC and LC may contribute to the seasonal variation in frontal 

activity. In the SE study region, the EAC retracts north in winter (Frusher et al. 

2014). As mentioned above, the overall southward extension of EAC brings more 

eddies and fronts to the South East Australia hotspot region. The retraction of 

EAC in winter will lead to the opposite result. For the SW study region, the 

seasonal cycle of frontal activity can be dominated by the seasonality of WAC and 

LC. Both of the currents have been confirmed to have significant seasonal cycles. 

WAC becomes weaker in winter and stronger in summer (Andrews 1979). LC 

also shows a seasonal cycle with maximum flow in May-June (Cresswell & 

Golding 1980; Feng et al. 2003). Due to the variation in the wind field, LC is 

weaker in summer and stronger in winter (Feng et al. 2003). The confluence of 

such seasonal currents may cause frontal activity to change seasonally. But for 

this region, there might be other potential causes, such as prevailing winds and 

seasonal precipitation, because it also covers part of the Indian Ocean beyond 
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WAC and LC.  

Based on the results from high-quality MODIS, significant fluctuations 

appeared in the interannual trends of frontal activity may correlate to climate 

modes such as El Niño-Southern Oscillation (ENSO). The most significant 

fluctuation as mentioned is that the SE study region shows a low frontal activity 

in 2010 (see Figure 3.13c). This coincides with the 2010-2011 La Niña. We 

suspect this to be due to a smaller temperature difference between the tropical 

water transported by EAC and cold water in the Tasman Sea during a La Niña. On 

the one hand, during a La Niña, tropical water in the Pacific Ocean moves west 

(Philander 1985) and pours into the Tasman Sea, increasing the temperature of 

water masses. On the other hand, increasing cloud cover and rainfall over 

tropical regions reduce the temperature of water transported by EAC (Philander 

1985). These then blur the SST boundary between EAC and cold water from the 

southern Tasman Sea and eventually frontal activity in the SE study region. 

However, this impact of ENSO needs to be studied further, because the AVHRR 

data results do not show significant changes in frontal activity during 2010.  

Increasing trends in probability and density of fronts can have implications 

for marine biodiversity, fisheries and aquaculture. In the study of Matear et al. 

(2013), their OEM model simulated that an increasing eddy activity in the 

Tasman Sea, with the EAC's increasing transport and southward extension due 

to climate change, causes an increase in the nutrient supply to the upper ocean, 

as well as increases in phytoplankton concentrations and biological productivity. 

Due to the close relationship between frontal activity and eddy activity, an 

increase in frontal activity is likely to be accompanied by an increase in primary 

productivity and leading to increases in biomass (Rivas 2006). This will promote 

the redistribution of some commercially valuable species, such as southern 

bluefin tuna and yellowfin tuna (Hartog et al. 2011). Therefore, our results may 

be used for a variety of purposes, such as planning and managing fishery areas 

and quotas and aquaculture facilities site planning. Knowledge of patterns and 

trends in productivity related to frontal activity could be useful for determining 

suitable locations for offshore aquaculture facilities. The frontal maps produced 
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in this study along with the trends can be used guide planning and management 

of these aquaculture sites and be used to assist in adaptive planning for climate 

change (Silva et al. 2012). As productivity shifts in both spatial patterns and 

temporal trends maps of frontal maps can also be useful to guide long-term 

fisheries strategies and policies to better integrate the impact of climate change 

on harvest levels (Chassot et al. 2011; Klemas 2013). 

In addition to trends, frontal activity appears to have specific spatial 

distribution. Firstly, it is more frequent in coastal areas than offshore (see Figure 

3.8, 3.10, 3.12 and 3.14). This is possibly due to more complex coastal conditions 

such as bathymetric features (Levine & White 1983; Wolanski & Hamner 1988; 

Wall et al. 2008) and the hydrodynamic influence of estuarine and riverine flux 

(Fischer et al. 2017). Secondly, Figures 3.12 and 3.14 show a significant 

latitudinal gradient in frontal probability; higher in the low latitudes and lower 

in the high latitudes. The variability of the strong currents mentioned above can 

be one of the causes of this gradient. For example, the eastward meandering of 

EAC near 35°S forms the Tasman Front which separates the warm water of the 

Coral Sea from the cold water of the Tasman Sea (Condie & Dunn 2006; 

Dambacher et al. 2012). Belkin and Cornillon (2003) suggested that the Tasman 

Front forms numerous meanders in the western and central Tasman Sea due to 

the EAC variability and topographic effects of ridges in the northern Tasman Sea 

(Andrews et al. 1980; Stanton 1981; Mulhearn 1987). According to Ridgway and 

Dunn (2003), the Tasman Front creates a complex marine environment with 

vertical mixing and eddies, which may correspond to high frontal probability in 

the low latitudes of the SE study region. The flow of the eastward meander is 

expected to increase with a flow reduction in the southward transport of EAC 

(Deng et al. 2011; Hill et al. 2011). For areas south of the Tasman Front (high-

latitude area), due to the flow reduction of the southward EAC, water masses are 

relatively more stable than the low latitudes leading to low frontal probability. 

Assessing this impact requires further research because only the MODIS data 

results show the significant latitudinal gradient in frontal probability. 
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4.3. Future research 

This study provides multiple directions for future research in frontal 

detection and trend analysis. Firstly, frontal detection methods need to be 

further evaluated with extensive data from ground-truthing surveys. Secondly, 

modelling efforts are needed to verify and demonstrate the correlation between 

increasing frontal activity and local potential biological activity and fisheries 

yields. For instance, the study of Rivas (2006) quantitatively estimated the 

correlation between thermal fronts and chlorophyll concentration. It was 

achieved by identifying small regions where the presence of a thermal front 

affects phytoplankton biomass and finding the relationship between surface 

chlorophyll concentration of these small regions and a larger region. This 

involves knowledge of marine processes and the response of phytoplankton to 

the effectiveness of light, temperature and nutrients. Therefore, the results of 

this study are expected to contribute to the building of predictive models for 

biodiversity based on thermal frontal activity. It will require clear satellite SST 

imagery corrected by in situ data, suitable and evaluated edge detection 

algorithm to produce clear thermal fronts and quantitative estimation of the 

response of biomass to changes in thermal fronts. 
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